ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiv Unicode version

Theorem oeiv 6282
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
oeiv  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ao  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem oeiv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6250 . . 3  |-  1o  e.  On
2 vex 2644 . . . . . . 7  |-  x  e. 
_V
3 omexg 6277 . . . . . . 7  |-  ( ( x  e.  _V  /\  A  e.  On )  ->  ( x  .o  A
)  e.  _V )
42, 3mpan 418 . . . . . 6  |-  ( A  e.  On  ->  (
x  .o  A )  e.  _V )
54ralrimivw 2465 . . . . 5  |-  ( A  e.  On  ->  A. x  e.  _V  ( x  .o  A )  e.  _V )
6 eqid 2100 . . . . . 6  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
76fnmpt 5185 . . . . 5  |-  ( A. x  e.  _V  (
x  .o  A )  e.  _V  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
85, 7syl 14 . . . 4  |-  ( A  e.  On  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
9 rdgexggg 6204 . . . 4  |-  ( ( ( x  e.  _V  |->  ( x  .o  A
) )  Fn  _V  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
108, 9syl3an1 1217 . . 3  |-  ( ( A  e.  On  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )
111, 10mp3an2 1271 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
12 oveq2 5714 . . . . . 6  |-  ( y  =  A  ->  (
x  .o  y )  =  ( x  .o  A ) )
1312mpteq2dv 3959 . . . . 5  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) ) )
14 rdgeq1 6198 . . . . 5  |-  ( ( x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) )
1513, 14syl 14 . . . 4  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) )
1615fveq1d 5355 . . 3  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
) )
17 fveq2 5353 . . 3  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) )
18 df-oexpi 6249 . . 3  |-o  =  ( y  e.  On ,  z  e.  On  |->  ( rec (
( x  e.  _V  |->  ( x  .o  y
) ) ,  1o ) `  z )
)
1916, 17, 18ovmpog 5837 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )  ->  ( Ao  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
2011, 19mpd3an3 1284 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ao  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1299    e. wcel 1448   A.wral 2375   _Vcvv 2641    |-> cmpt 3929   Oncon0 4223    Fn wfn 5054   ` cfv 5059  (class class class)co 5706   reccrdg 6196   1oc1o 6236    .o comu 6241   ↑o coei 6242
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-iord 4226  df-on 4228  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-oadd 6247  df-omul 6248  df-oexpi 6249
This theorem is referenced by:  oei0  6285  oeicl  6288
  Copyright terms: Public domain W3C validator