ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiv Unicode version

Theorem oeiv 6165
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
oeiv  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A𝑜  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem oeiv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6136 . . 3  |-  1o  e.  On
2 vex 2618 . . . . . . 7  |-  x  e. 
_V
3 omexg 6160 . . . . . . 7  |-  ( ( x  e.  _V  /\  A  e.  On )  ->  ( x  .o  A
)  e.  _V )
42, 3mpan 415 . . . . . 6  |-  ( A  e.  On  ->  (
x  .o  A )  e.  _V )
54ralrimivw 2443 . . . . 5  |-  ( A  e.  On  ->  A. x  e.  _V  ( x  .o  A )  e.  _V )
6 eqid 2085 . . . . . 6  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
76fnmpt 5102 . . . . 5  |-  ( A. x  e.  _V  (
x  .o  A )  e.  _V  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
85, 7syl 14 . . . 4  |-  ( A  e.  On  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
9 rdgexggg 6090 . . . 4  |-  ( ( ( x  e.  _V  |->  ( x  .o  A
) )  Fn  _V  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
108, 9syl3an1 1205 . . 3  |-  ( ( A  e.  On  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )
111, 10mp3an2 1259 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
12 oveq2 5615 . . . . . 6  |-  ( y  =  A  ->  (
x  .o  y )  =  ( x  .o  A ) )
1312mpteq2dv 3904 . . . . 5  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) ) )
14 rdgeq1 6084 . . . . 5  |-  ( ( x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) )
1513, 14syl 14 . . . 4  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) )
1615fveq1d 5264 . . 3  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
) )
17 fveq2 5262 . . 3  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) )
18 df-oexpi 6135 . . 3  |-𝑜  =  ( y  e.  On ,  z  e.  On  |->  ( rec (
( x  e.  _V  |->  ( x  .o  y
) ) ,  1o ) `  z )
)
1916, 17, 18ovmpt2g 5730 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )  ->  ( A𝑜  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
2011, 19mpd3an3 1272 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( A𝑜  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1287    e. wcel 1436   A.wral 2355   _Vcvv 2615    |-> cmpt 3874   Oncon0 4163    Fn wfn 4973   ` cfv 4978  (class class class)co 5607   reccrdg 6082   1oc1o 6122    .o comu 6127   ↑𝑜 coei 6128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3928  ax-sep 3931  ax-nul 3939  ax-pow 3983  ax-pr 4009  ax-un 4233  ax-setind 4325
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3911  df-id 4093  df-iord 4166  df-on 4168  df-suc 4171  df-xp 4416  df-rel 4417  df-cnv 4418  df-co 4419  df-dm 4420  df-rn 4421  df-res 4422  df-ima 4423  df-iota 4943  df-fun 4980  df-fn 4981  df-f 4982  df-f1 4983  df-fo 4984  df-f1o 4985  df-fv 4986  df-ov 5610  df-oprab 5611  df-mpt2 5612  df-1st 5862  df-2nd 5863  df-recs 6018  df-irdg 6083  df-1o 6129  df-oadd 6133  df-omul 6134  df-oexpi 6135
This theorem is referenced by:  oei0  6168  oeicl  6171
  Copyright terms: Public domain W3C validator