ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiv Unicode version

Theorem oeiv 6511
Description: Value of ordinal exponentiation. (Contributed by Jim Kingdon, 9-Jul-2019.)
Assertion
Ref Expression
oeiv  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ao  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem oeiv
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6478 . . 3  |-  1o  e.  On
2 vex 2763 . . . . . . 7  |-  x  e. 
_V
3 omexg 6506 . . . . . . 7  |-  ( ( x  e.  _V  /\  A  e.  On )  ->  ( x  .o  A
)  e.  _V )
42, 3mpan 424 . . . . . 6  |-  ( A  e.  On  ->  (
x  .o  A )  e.  _V )
54ralrimivw 2568 . . . . 5  |-  ( A  e.  On  ->  A. x  e.  _V  ( x  .o  A )  e.  _V )
6 eqid 2193 . . . . . 6  |-  ( x  e.  _V  |->  ( x  .o  A ) )  =  ( x  e. 
_V  |->  ( x  .o  A ) )
76fnmpt 5381 . . . . 5  |-  ( A. x  e.  _V  (
x  .o  A )  e.  _V  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
85, 7syl 14 . . . 4  |-  ( A  e.  On  ->  (
x  e.  _V  |->  ( x  .o  A ) )  Fn  _V )
9 rdgexggg 6432 . . . 4  |-  ( ( ( x  e.  _V  |->  ( x  .o  A
) )  Fn  _V  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
108, 9syl3an1 1282 . . 3  |-  ( ( A  e.  On  /\  1o  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )
111, 10mp3an2 1336 . 2  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `
 B )  e. 
_V )
12 oveq2 5927 . . . . . 6  |-  ( y  =  A  ->  (
x  .o  y )  =  ( x  .o  A ) )
1312mpteq2dv 4121 . . . . 5  |-  ( y  =  A  ->  (
x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) ) )
14 rdgeq1 6426 . . . . 5  |-  ( ( x  e.  _V  |->  ( x  .o  y ) )  =  ( x  e.  _V  |->  ( x  .o  A ) )  ->  rec ( ( x  e.  _V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) )
1513, 14syl 14 . . . 4  |-  ( y  =  A  ->  rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o )  =  rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) )
1615fveq1d 5557 . . 3  |-  ( y  =  A  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  y ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
) )
17 fveq2 5555 . . 3  |-  ( z  =  B  ->  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  z
)  =  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
) )
18 df-oexpi 6477 . . 3  |-o  =  ( y  e.  On ,  z  e.  On  |->  ( rec (
( x  e.  _V  |->  ( x  .o  y
) ) ,  1o ) `  z )
)
1916, 17, 18ovmpog 6054 . 2  |-  ( ( A  e.  On  /\  B  e.  On  /\  ( rec ( ( x  e. 
_V  |->  ( x  .o  A ) ) ,  1o ) `  B
)  e.  _V )  ->  ( Ao  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
2011, 19mpd3an3 1349 1  |-  ( ( A  e.  On  /\  B  e.  On )  ->  ( Ao  B )  =  ( rec ( ( x  e.  _V  |->  ( x  .o  A ) ) ,  1o ) `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   _Vcvv 2760    |-> cmpt 4091   Oncon0 4395    Fn wfn 5250   ` cfv 5255  (class class class)co 5919   reccrdg 6424   1oc1o 6464    .o comu 6469   ↑o coei 6470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-oadd 6475  df-omul 6476  df-oexpi 6477
This theorem is referenced by:  oei0  6514  oeicl  6517
  Copyright terms: Public domain W3C validator