ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oeiexg Unicode version

Theorem oeiexg 6228
Description: Ordinal exponentiation is a set. (Contributed by Mario Carneiro, 3-Jul-2019.)
Assertion
Ref Expression
oeiexg  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Ao  B )  e.  _V )

Proof of Theorem oeiexg
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2623 . . . 4  |-  y  e. 
_V
2 1on 6202 . . . . . 6  |-  1o  e.  On
32elexi 2632 . . . . 5  |-  1o  e.  _V
4 vex 2623 . . . . . . 7  |-  z  e. 
_V
5 vex 2623 . . . . . . 7  |-  x  e. 
_V
6 omexg 6226 . . . . . . 7  |-  ( ( z  e.  _V  /\  x  e.  _V )  ->  ( z  .o  x
)  e.  _V )
74, 5, 6mp2an 418 . . . . . 6  |-  ( z  .o  x )  e. 
_V
8 eqid 2089 . . . . . 6  |-  ( z  e.  _V  |->  ( z  .o  x ) )  =  ( z  e. 
_V  |->  ( z  .o  x ) )
97, 8fnmpti 5155 . . . . 5  |-  ( z  e.  _V  |->  ( z  .o  x ) )  Fn  _V
103, 9rdgexg 6168 . . . 4  |-  ( y  e.  _V  ->  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)  e.  _V )
111, 10ax-mp 7 . . 3  |-  ( rec ( ( z  e. 
_V  |->  ( z  .o  x ) ) ,  1o ) `  y
)  e.  _V
1211gen2 1385 . 2  |-  A. x A. y ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )  e.  _V
13 df-oexpi 6201 . . 3  |-o  =  ( x  e.  On ,  y  e.  On  |->  ( rec (
( z  e.  _V  |->  ( z  .o  x
) ) ,  1o ) `  y )
)
1413mpt2fvex 5987 . 2  |-  ( ( A. x A. y
( rec ( ( z  e.  _V  |->  ( z  .o  x ) ) ,  1o ) `
 y )  e. 
_V  /\  A  e.  V  /\  B  e.  W
)  ->  ( Ao  B
)  e.  _V )
1512, 14mp3an1 1261 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( Ao  B )  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1288    e. wcel 1439   _Vcvv 2620    |-> cmpt 3905   Oncon0 4199   ` cfv 5028  (class class class)co 5666   reccrdg 6148   1oc1o 6188    .o comu 6193   ↑o coei 6194
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-iord 4202  df-on 4204  df-suc 4207  df-xp 4457  df-rel 4458  df-cnv 4459  df-co 4460  df-dm 4461  df-rn 4462  df-res 4463  df-ima 4464  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-irdg 6149  df-1o 6195  df-oadd 6199  df-omul 6200  df-oexpi 6201
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator