HomeHome Intuitionistic Logic Explorer
Theorem List (p. 100 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9901-10000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremxltnegi 9901 Forward direction of xltneg 9902. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A )
 
Theoremxltneg 9902 Extended real version of ltneg 8481. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -e B  <  -e A ) )
 
Theoremxleneg 9903 Extended real version of leneg 8484. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -e B  <_  -e A ) )
 
Theoremxlt0neg1 9904 Extended real version of lt0neg1 8487. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A  <  0  <->  0  <  -e A ) )
 
Theoremxlt0neg2 9905 Extended real version of lt0neg2 8488. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 0  <  A  <->  -e A  <  0 ) )
 
Theoremxle0neg1 9906 Extended real version of le0neg1 8489. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  ( A  e.  RR*  ->  ( A  <_  0  <->  0  <_  -e A ) )
 
Theoremxle0neg2 9907 Extended real version of le0neg2 8490. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  ( A  e.  RR*  ->  ( 0  <_  A  <->  -e A  <_  0 ) )
 
Theoremxrpnfdc 9908 An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
 |-  ( A  e.  RR*  -> DECID  A  = +oo )
 
Theoremxrmnfdc 9909 An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
 |-  ( A  e.  RR*  -> DECID  A  = -oo )
 
Theoremxaddf 9910 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |- 
 +e : (
 RR*  X.  RR* ) --> RR*
 
Theoremxaddval 9911 Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
 
Theoremxaddpnf1 9912 Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
 
Theoremxaddpnf2 9913 Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
 
Theoremxaddmnf1 9914 Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
 
Theoremxaddmnf2 9915 Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
 
Theorempnfaddmnf 9916 Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( +oo +e -oo )  =  0
 
Theoremmnfaddpnf 9917 Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( -oo +e +oo )  =  0
 
Theoremrexadd 9918 The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e B )  =  ( A  +  B ) )
 
Theoremrexsub 9919 Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e  -e B )  =  ( A  -  B ) )
 
Theoremrexaddd 9920 The extended real addition operation when both arguments are real. Deduction version of rexadd 9918. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A +e B )  =  ( A  +  B ) )
 
Theoremxnegcld 9921 Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  -e A  e.  RR* )
 
Theoremxrex 9922 The set of extended reals exists. (Contributed by NM, 24-Dec-2006.)
 |-  RR*  e.  _V
 
Theoremxaddnemnf 9923 Closure of extended real addition in the subset  RR*  /  { -oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  ->  ( A +e B )  =/= -oo )
 
Theoremxaddnepnf 9924 Closure of extended real addition in the subset  RR*  /  { +oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  ->  ( A +e B )  =/= +oo )
 
Theoremxnegid 9925 Extended real version of negid 8266. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A +e  -e A )  =  0 )
 
Theoremxaddcl 9926 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
 
Theoremxaddcom 9927 The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )
 
Theoremxaddid1 9928 Extended real version of addrid 8157. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
 
Theoremxaddid2 9929 Extended real version of addlid 8158. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 0 +e A )  =  A )
 
Theoremxaddid1d 9930  0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  ( A +e 0 )  =  A )
 
Theoremxnn0lenn0nn0 9931 An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
 |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )
 
Theoremxnn0le2is012 9932 An extended nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 24-Nov-2021.)
 |-  ( ( N  e. NN0*  /\  N  <_  2 )  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) )
 
Theoremxnn0xadd0 9933 The sum of two extended nonnegative integers is  0 iff each of the two extended nonnegative integers is 
0. (Contributed by AV, 14-Dec-2020.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <-> 
 ( A  =  0 
 /\  B  =  0 ) ) )
 
Theoremxnegdi 9934 Extended real version of negdi 8276. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> 
 -e ( A +e B )  =  (  -e A +e  -e B ) )
 
Theoremxaddass 9935 Associativity of extended real addition. The correct condition here is "it is not the case that both +oo and -oo appear as one of  A ,  B ,  C, i.e.  -.  { +oo , -oo }  C_  { A ,  B ,  C }", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -oo is not present in  A ,  B ,  C, and xaddass2 9936, where +oo is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  ->  (
 ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
 
Theoremxaddass2 9936 Associativity of extended real addition. See xaddass 9935 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo ) )  ->  (
 ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
 
Theoremxpncan 9937 Extended real version of pncan 8225. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( ( A +e B ) +e  -e B )  =  A )
 
Theoremxnpcan 9938 Extended real version of npcan 8228. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( ( A +e  -e B ) +e B )  =  A )
 
Theoremxleadd1a 9939 Extended real version of leadd1 8449; note that the converse implication is not true, unlike the real version (for example  0  <  1 but  ( 1 +e +oo )  <_  ( 0 +e +oo )). (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )
 
Theoremxleadd2a 9940 Commuted form of xleadd1a 9939. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( C +e A )  <_  ( C +e B ) )
 
Theoremxleadd1 9941 Weakened version of xleadd1a 9939 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A +e C )  <_  ( B +e C ) ) )
 
Theoremxltadd1 9942 Extended real version of ltadd1 8448. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
 
Theoremxltadd2 9943 Extended real version of ltadd2 8438. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( C +e A )  <  ( C +e B ) ) )
 
Theoremxaddge0 9944 The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( 0 
 <_  A  /\  0  <_  B ) )  -> 
 0  <_  ( A +e B ) )
 
Theoremxle2add 9945 Extended real version of le2add 8463. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )
 
Theoremxlt2add 9946 Extended real version of lt2add 8464. Note that ltleadd 8465, which has weaker assumptions, is not true for the extended reals (since  0  + +oo  <  1  + +oo fails). (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A  <  C  /\  B  <  D ) 
 ->  ( A +e B )  <  ( C +e D ) ) )
 
Theoremxsubge0 9947 Extended real version of subge0 8494. (Contributed by Mario Carneiro, 24-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( 0  <_  ( A +e  -e B )  <->  B  <_  A ) )
 
Theoremxposdif 9948 Extended real version of posdif 8474. (Contributed by Mario Carneiro, 24-Aug-2015.) (Revised by Jim Kingdon, 17-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  0  <  ( B +e  -e A ) ) )
 
Theoremxlesubadd 9949 Under certain conditions, the conclusion of lesubadd 8453 is true even in the extended reals. (Contributed by Mario Carneiro, 4-Sep-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( 0  <_  A  /\  B  =/= -oo  /\  0  <_  C ) ) 
 ->  ( ( A +e  -e B ) 
 <_  C  <->  A  <_  ( C +e B ) ) )
 
Theoremxaddcld 9950 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   =>    |-  ( ph  ->  ( A +e B )  e.  RR* )
 
Theoremxadd4d 9951 Rearrangement of 4 terms in a sum for extended addition, analogous to add4d 8188. (Contributed by Alexander van der Vekens, 21-Dec-2017.)
 |-  ( ph  ->  ( A  e.  RR*  /\  A  =/= -oo ) )   &    |-  ( ph  ->  ( B  e.  RR*  /\  B  =/= -oo )
 )   &    |-  ( ph  ->  ( C  e.  RR*  /\  C  =/= -oo ) )   &    |-  ( ph  ->  ( D  e.  RR*  /\  D  =/= -oo )
 )   =>    |-  ( ph  ->  (
 ( A +e B ) +e
 ( C +e D ) )  =  ( ( A +e C ) +e
 ( B +e D ) ) )
 
Theoremxnn0add4d 9952 Rearrangement of 4 terms in a sum for extended addition of extended nonnegative integers, analogous to xadd4d 9951. (Contributed by AV, 12-Dec-2020.)
 |-  ( ph  ->  A  e. NN0* )   &    |-  ( ph  ->  B  e. NN0* )   &    |-  ( ph  ->  C  e. NN0* )   &    |-  ( ph  ->  D  e. NN0* )   =>    |-  ( ph  ->  (
 ( A +e B ) +e
 ( C +e D ) )  =  ( ( A +e C ) +e
 ( B +e D ) ) )
 
Theoremxleaddadd 9953 Cancelling a factor of two in  <_ (expressed as addition rather than as a factor to avoid extended real multiplication). (Contributed by Jim Kingdon, 18-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  ( A +e A )  <_  ( B +e B ) ) )
 
4.5.3  Real number intervals
 
Syntaxcioo 9954 Extend class notation with the set of open intervals of extended reals.
 class  (,)
 
Syntaxcioc 9955 Extend class notation with the set of open-below, closed-above intervals of extended reals.
 class  (,]
 
Syntaxcico 9956 Extend class notation with the set of closed-below, open-above intervals of extended reals.
 class  [,)
 
Syntaxcicc 9957 Extend class notation with the set of closed intervals of extended reals.
 class  [,]
 
Definitiondf-ioo 9958* Define the set of open intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <  z  /\  z  <  y ) } )
 
Definitiondf-ioc 9959* Define the set of open-below, closed-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <  z  /\  z  <_  y ) } )
 
Definitiondf-ico 9960* Define the set of closed-below, open-above intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <  y ) } )
 
Definitiondf-icc 9961* Define the set of closed intervals of extended reals. (Contributed by NM, 24-Dec-2006.)
 |- 
 [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x  <_  z  /\  z  <_  y ) } )
 
Theoremixxval 9962* Value of the interval function. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A O B )  =  {
 z  e.  RR*  |  ( A R z  /\  z S B ) }
 )
 
Theoremelixx1 9963* Membership in an interval of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A O B ) 
 <->  ( C  e.  RR*  /\  A R C  /\  C S B ) ) )
 
Theoremixxf 9964* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  O : (
 RR*  X.  RR* ) --> ~P RR*
 
Theoremixxex 9965* The set of intervals of extended reals exists. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  O  e.  _V
 
Theoremixxssxr 9966* The set of intervals of extended reals maps to subsets of extended reals. (Contributed by Mario Carneiro, 4-Jul-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( A O B )  C_  RR*
 
Theoremelixx3g 9967* Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show  A  e.  RR* and  B  e.  RR*. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   =>    |-  ( C  e.  ( A O B )  <-> 
 ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A R C  /\  C S B ) ) )
 
Theoremixxssixx 9968* An interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( A  e.  RR*  /\  w  e.  RR* )  ->  ( A R w 
 ->  A T w ) )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR* )  ->  ( w S B  ->  w U B ) )   =>    |-  ( A O B )  C_  ( A P B )
 
Theoremixxdisj 9969* Split an interval into disjoint pieces. (Contributed by Mario Carneiro, 16-Jun-2014.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( B  e.  RR*  /\  w  e.  RR* )  ->  ( B T w  <->  -.  w S B ) )   =>    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A O B )  i^i  ( B P C ) )  =  (/) )
 
Theoremixxss1 9970* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z S y ) }
 )   &    |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  w  e.  RR* )  ->  (
 ( A W B  /\  B T w ) 
 ->  A R w ) )   =>    |-  ( ( A  e.  RR*  /\  A W B ) 
 ->  ( B P C )  C_  ( A O C ) )
 
Theoremixxss2 9971* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 3-Nov-2013.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z  /\  z T y ) }
 )   &    |-  ( ( w  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( ( w T B  /\  B W C )  ->  w S C ) )   =>    |-  ( ( C  e.  RR*  /\  B W C )  ->  ( A P B )  C_  ( A O C ) )
 
Theoremixxss12 9972* Subset relationship for intervals of extended reals. (Contributed by Mario Carneiro, 20-Feb-2015.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  O  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x R z 
 /\  z S y ) } )   &    |-  P  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  ( x T z  /\  z U y ) }
 )   &    |-  ( ( A  e.  RR*  /\  C  e.  RR*  /\  w  e.  RR* )  ->  (
 ( A W C  /\  C T w ) 
 ->  A R w ) )   &    |-  ( ( w  e.  RR*  /\  D  e.  RR*  /\  B  e.  RR* )  ->  ( ( w U D  /\  D X B )  ->  w S B ) )   =>    |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A W C  /\  D X B ) )  ->  ( C P D ) 
 C_  ( A O B ) )
 
Theoremiooex 9973 The set of open intervals of extended reals exists. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 (,)  e.  _V
 
Theoremiooval 9974* Value of the open interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <  B ) } )
 
Theoremiooidg 9975 An open interval with identical lower and upper bounds is empty. (Contributed by Jim Kingdon, 29-Mar-2020.)
 |-  ( A  e.  RR*  ->  ( A (,) A )  =  (/) )
 
Theoremelioo3g 9976 Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show  A  e.  RR* and  B  e.  RR*. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  C  /\  C  <  B ) ) )
 
Theoremelioo1 9977 Membership in an open interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR*  /\  A  <  C  /\  C  <  B ) ) )
 
Theoremelioore 9978 A member of an open interval of reals is a real. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( A  e.  ( B (,) C )  ->  A  e.  RR )
 
Theoremlbioog 9979 An open interval does not contain its left endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  A  e.  ( A (,) B ) )
 
Theoremubioog 9980 An open interval does not contain its right endpoint. (Contributed by Jim Kingdon, 30-Mar-2020.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  B  e.  ( A (,) B ) )
 
Theoremiooval2 9981* Value of the open interval function. (Contributed by NM, 6-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  =  { x  e.  RR  |  ( A  <  x  /\  x  <  B ) } )
 
Theoremiooss1 9982 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 20-Feb-2015.)
 |-  ( ( A  e.  RR*  /\  A  <_  B )  ->  ( B (,) C )  C_  ( A (,) C ) )
 
Theoremiooss2 9983 Subset relationship for open intervals of extended reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( C  e.  RR*  /\  B  <_  C )  ->  ( A (,) B )  C_  ( A (,) C ) )
 
Theoremiocval 9984* Value of the open-below, closed-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,] B )  =  { x  e.  RR*  |  ( A  <  x  /\  x  <_  B ) } )
 
Theoremicoval 9985* Value of the closed-below, open-above interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,) B )  =  { x  e.  RR*  |  ( A 
 <_  x  /\  x  <  B ) } )
 
Theoremiccval 9986* Value of the closed interval function. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A [,] B )  =  { x  e.  RR*  |  ( A 
 <_  x  /\  x  <_  B ) } )
 
Theoremelioo2 9987 Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( C  e.  RR  /\  A  <  C  /\  C  <  B ) ) )
 
Theoremelioc1 9988 Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A (,] B )  <->  ( C  e.  RR*  /\  A  <  C  /\  C  <_  B ) ) )
 
Theoremelico1 9989 Membership in a closed-below, open-above interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,) B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <  B ) ) )
 
Theoremelicc1 9990 Membership in a closed interval of extended reals. (Contributed by NM, 24-Dec-2006.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( C  e.  ( A [,] B )  <->  ( C  e.  RR*  /\  A  <_  C  /\  C  <_  B ) ) )
 
Theoremiccid 9991 A closed interval with identical lower and upper bounds is a singleton. (Contributed by Jeff Hankins, 13-Jul-2009.)
 |-  ( A  e.  RR*  ->  ( A [,] A )  =  { A }
 )
 
Theoremicc0r 9992 An empty closed interval of extended reals. (Contributed by Jim Kingdon, 30-Mar-2020.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  A  ->  ( A [,] B )  =  (/) ) )
 
Theoremeliooxr 9993 An inhabited open interval spans an interval of extended reals. (Contributed by NM, 17-Aug-2008.)
 |-  ( A  e.  ( B (,) C )  ->  ( B  e.  RR*  /\  C  e.  RR* ) )
 
Theoremeliooord 9994 Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
 |-  ( A  e.  ( B (,) C )  ->  ( B  <  A  /\  A  <  C ) )
 
Theoremubioc1 9995 The upper bound belongs to an open-below, closed-above interval. See ubicc2 10051. (Contributed by FL, 29-May-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  B  e.  ( A (,] B ) )
 
Theoremlbico1 9996 The lower bound belongs to a closed-below, open-above interval. See lbicc2 10050. (Contributed by FL, 29-May-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  A  e.  ( A [,) B ) )
 
Theoremiccleub 9997 An element of a closed interval is less than or equal to its upper bound. (Contributed by Jeff Hankins, 14-Jul-2009.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A [,] B ) )  ->  C  <_  B )
 
Theoremiccgelb 9998 An element of a closed interval is more than or equal to its lower bound (Contributed by Thierry Arnoux, 23-Dec-2016.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  ( A [,] B ) )  ->  A  <_  C )
 
Theoremelioo5 9999 Membership in an open interval of extended reals. (Contributed by NM, 17-Aug-2008.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  ( C  e.  ( A (,) B )  <->  ( A  <  C 
 /\  C  <  B ) ) )
 
Theoremelioo4g 10000 Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( C  e.  ( A (,) B )  <->  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  /\  ( A  <  C  /\  C  <  B ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >