HomeHome Intuitionistic Logic Explorer
Theorem List (p. 100 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9901-10000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltpnf 9901 Any (finite) real is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  ->  A  < +oo )
 
Theoremltpnfd 9902 Any (finite) real is less than plus infinity. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  < +oo )
 
Theorem0ltpnf 9903 Zero is less than plus infinity (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  0  < +oo
 
Theoremmnflt 9904 Minus infinity is less than any (finite) real. (Contributed by NM, 14-Oct-2005.)
 |-  ( A  e.  RR  -> -oo  <  A )
 
Theoremmnflt0 9905 Minus infinity is less than 0 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |- -oo  <  0
 
Theoremmnfltpnf 9906 Minus infinity is less than plus infinity. (Contributed by NM, 14-Oct-2005.)
 |- -oo  < +oo
 
Theoremmnfltxr 9907 Minus infinity is less than an extended real that is either real or plus infinity. (Contributed by NM, 2-Feb-2006.)
 |-  ( ( A  e.  RR  \/  A  = +oo )  -> -oo  <  A )
 
Theorempnfnlt 9908 No extended real is greater than plus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( A  e.  RR*  ->  -. +oo  <  A )
 
Theoremnltmnf 9909 No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005.)
 |-  ( A  e.  RR*  ->  -.  A  < -oo )
 
Theorempnfge 9910 Plus infinity is an upper bound for extended reals. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  e.  RR*  ->  A  <_ +oo )
 
Theorem0lepnf 9911 0 less than or equal to positive infinity. (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  0  <_ +oo
 
Theoremnn0pnfge0 9912 If a number is a nonnegative integer or positive infinity, it is greater than or equal to 0. (Contributed by Alexander van der Vekens, 6-Jan-2018.)
 |-  ( ( N  e.  NN0 
 \/  N  = +oo )  ->  0  <_  N )
 
Theoremmnfle 9913 Minus infinity is less than or equal to any extended real. (Contributed by NM, 19-Jan-2006.)
 |-  ( A  e.  RR*  -> -oo  <_  A )
 
Theoremxrltnsym 9914 Ordering on the extended reals is not symmetric. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  -.  B  <  A ) )
 
Theoremxrltnsym2 9915 'Less than' is antisymmetric and irreflexive for extended reals. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  -.  ( A  <  B 
 /\  B  <  A ) )
 
Theoremxrlttr 9916 Ordering on the extended reals is transitive. (Contributed by NM, 15-Oct-2005.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <  B  /\  B  <  C ) 
 ->  A  <  C ) )
 
Theoremxrltso 9917 'Less than' is a weakly linear ordering on the extended reals. (Contributed by NM, 15-Oct-2005.)
 |- 
 <  Or  RR*
 
Theoremxrlttri3 9918 Extended real version of lttri3 8151. (Contributed by NM, 9-Feb-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( -.  A  <  B  /\  -.  B  <  A ) ) )
 
Theoremxrltle 9919 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  ->  A  <_  B )
 )
 
Theoremxrltled 9920 'Less than' implies 'less than or equal to' for extended reals. Deduction form of xrltle 9919. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A  <  B )   =>    |-  ( ph  ->  A 
 <_  B )
 
Theoremxrleid 9921 'Less than or equal to' is reflexive for extended reals. (Contributed by NM, 7-Feb-2007.)
 |-  ( A  e.  RR*  ->  A  <_  A )
 
Theoremxrleidd 9922 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid 9921. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  A  <_  A )
 
Theoremxnn0dcle 9923 Decidability of  <_ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )
 
Theoremxnn0letri 9924 Dichotomy for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( A  <_  B  \/  B  <_  A ) )
 
Theoremxrletri3 9925 Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  =  B  <->  ( A  <_  B  /\  B  <_  A ) ) )
 
Theoremxrletrid 9926 Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  B 
 <_  A )   =>    |-  ( ph  ->  A  =  B )
 
Theoremxrlelttr 9927 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <_  B  /\  B  <  C ) 
 ->  A  <  C ) )
 
Theoremxrltletr 9928 Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <  B  /\  B  <_  C )  ->  A  <  C ) )
 
Theoremxrletr 9929 Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A  <_  B  /\  B  <_  C )  ->  A  <_  C )
 )
 
Theoremxrlttrd 9930 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrlelttrd 9931 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  B  <  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrltletrd 9932 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  B  <_  C )   =>    |-  ( ph  ->  A  <  C )
 
Theoremxrletrd 9933 Transitive law for ordering on extended reals. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ph  ->  A  e.  RR* )   &    |-  ( ph  ->  B  e.  RR* )   &    |-  ( ph  ->  C  e.  RR* )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  B 
 <_  C )   =>    |-  ( ph  ->  A  <_  C )
 
Theoremxrltne 9934 'Less than' implies not equal for extended reals. (Contributed by NM, 20-Jan-2006.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  B  =/=  A )
 
Theoremnltpnft 9935 An extended real is not less than plus infinity iff they are equal. (Contributed by NM, 30-Jan-2006.)
 |-  ( A  e.  RR*  ->  ( A  = +oo  <->  -.  A  < +oo ) )
 
Theoremnpnflt 9936 An extended real is less than plus infinity iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
 |-  ( A  e.  RR*  ->  ( A  < +oo  <->  A  =/= +oo )
 )
 
Theoremxgepnf 9937 An extended real which is greater than plus infinity is plus infinity. (Contributed by Thierry Arnoux, 18-Dec-2016.)
 |-  ( A  e.  RR*  ->  ( +oo  <_  A  <->  A  = +oo ) )
 
Theoremngtmnft 9938 An extended real is not greater than minus infinity iff they are equal. (Contributed by NM, 2-Feb-2006.)
 |-  ( A  e.  RR*  ->  ( A  = -oo  <->  -. -oo 
 <  A ) )
 
Theoremnmnfgt 9939 An extended real is greater than minus infinite iff they are not equal. (Contributed by Jim Kingdon, 17-Apr-2023.)
 |-  ( A  e.  RR*  ->  ( -oo  <  A  <->  A  =/= -oo )
 )
 
Theoremxrrebnd 9940 An extended real is real iff it is strictly bounded by infinities. (Contributed by NM, 2-Feb-2006.)
 |-  ( A  e.  RR*  ->  ( A  e.  RR  <->  ( -oo  <  A  /\  A  < +oo ) ) )
 
Theoremxrre 9941 A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( -oo  <  A  /\  A  <_  B ) )  ->  A  e.  RR )
 
Theoremxrre2 9942 An extended real between two others is real. (Contributed by NM, 6-Feb-2007.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  ( A  <  B  /\  B  <  C ) )  ->  B  e.  RR )
 
Theoremxrre3 9943 A way of proving that an extended real is real. (Contributed by FL, 29-May-2014.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( B 
 <_  A  /\  A  < +oo ) )  ->  A  e.  RR )
 
Theoremge0gtmnf 9944 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <_  A ) 
 -> -oo  <  A )
 
Theoremge0nemnf 9945 A nonnegative extended real is greater than negative infinity. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  0  <_  A ) 
 ->  A  =/= -oo )
 
Theoremxrrege0 9946 A nonnegative extended real that is less than a real bound is real. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR )  /\  ( 0 
 <_  A  /\  A  <_  B ) )  ->  A  e.  RR )
 
Theoremz2ge 9947* There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  E. k  e.  ZZ  ( M  <_  k  /\  N  <_  k ) )
 
Theoremxnegeq 9948 Equality of two extended numbers with  -e in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  =  B  -> 
 -e A  =  -e B )
 
Theoremxnegpnf 9949 Minus +oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
 |-  -e +oo  = -oo
 
Theoremxnegmnf 9950 Minus -oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
 |-  -e -oo  = +oo
 
Theoremrexneg 9951 Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR  -> 
 -e A  =  -u A )
 
Theoremxneg0 9952 The negative of zero. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  -e 0  =  0
 
Theoremxnegcl 9953 Closure of extended real negative. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  -e A  e.  RR* )
 
Theoremxnegneg 9954 Extended real version of negneg 8321. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  -e  -e A  =  A )
 
Theoremxneg11 9955 Extended real version of neg11 8322. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (  -e A  =  -e B  <->  A  =  B )
 )
 
Theoremxltnegi 9956 Forward direction of xltneg 9957. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <  B )  ->  -e B  <  -e A )
 
Theoremxltneg 9957 Extended real version of ltneg 8534. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  B  <->  -e B  <  -e A ) )
 
Theoremxleneg 9958 Extended real version of leneg 8537. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <_  B  <->  -e B  <_  -e A ) )
 
Theoremxlt0neg1 9959 Extended real version of lt0neg1 8540. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A  <  0  <->  0  <  -e A ) )
 
Theoremxlt0neg2 9960 Extended real version of lt0neg2 8541. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 0  <  A  <->  -e A  <  0 ) )
 
Theoremxle0neg1 9961 Extended real version of le0neg1 8542. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  ( A  e.  RR*  ->  ( A  <_  0  <->  0  <_  -e A ) )
 
Theoremxle0neg2 9962 Extended real version of le0neg2 8543. (Contributed by Mario Carneiro, 9-Sep-2015.)
 |-  ( A  e.  RR*  ->  ( 0  <_  A  <->  -e A  <_  0 ) )
 
Theoremxrpnfdc 9963 An extended real is or is not plus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
 |-  ( A  e.  RR*  -> DECID  A  = +oo )
 
Theoremxrmnfdc 9964 An extended real is or is not minus infinity. (Contributed by Jim Kingdon, 13-Apr-2023.)
 |-  ( A  e.  RR*  -> DECID  A  = -oo )
 
Theoremxaddf 9965 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |- 
 +e : (
 RR*  X.  RR* ) --> RR*
 
Theoremxaddval 9966 Value of the extended real addition operation. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  if ( A  = +oo ,  if ( B  = -oo ,  0 , +oo ) ,  if ( A  = -oo ,  if ( B  = +oo ,  0 , -oo ) ,  if ( B  = +oo , +oo ,  if ( B  = -oo , -oo ,  ( A  +  B ) ) ) ) ) )
 
Theoremxaddpnf1 9967 Addition of positive infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( A +e +oo )  = +oo )
 
Theoremxaddpnf2 9968 Addition of positive infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= -oo )  ->  ( +oo +e A )  = +oo )
 
Theoremxaddmnf1 9969 Addition of negative infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( A +e -oo )  = -oo )
 
Theoremxaddmnf2 9970 Addition of negative infinity on the left. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  A  =/= +oo )  ->  ( -oo +e A )  = -oo )
 
Theorempnfaddmnf 9971 Addition of positive and negative infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( +oo +e -oo )  =  0
 
Theoremmnfaddpnf 9972 Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( -oo +e +oo )  =  0
 
Theoremrexadd 9973 The extended real addition operation when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e B )  =  ( A  +  B ) )
 
Theoremrexsub 9974 Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A +e  -e B )  =  ( A  -  B ) )
 
Theoremrexaddd 9975 The extended real addition operation when both arguments are real. Deduction version of rexadd 9973. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( A +e B )  =  ( A  +  B ) )
 
Theoremxnegcld 9976 Closure of extended real negative. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  -e A  e.  RR* )
 
Theoremxrex 9977 The set of extended reals exists. (Contributed by NM, 24-Dec-2006.)
 |-  RR*  e.  _V
 
Theoremxaddnemnf 9978 Closure of extended real addition in the subset  RR*  /  { -oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo ) )  ->  ( A +e B )  =/= -oo )
 
Theoremxaddnepnf 9979 Closure of extended real addition in the subset  RR*  /  { +oo }. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo ) )  ->  ( A +e B )  =/= +oo )
 
Theoremxnegid 9980 Extended real version of negid 8318. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A +e  -e A )  =  0 )
 
Theoremxaddcl 9981 The extended real addition operation is closed in extended reals. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  e.  RR* )
 
Theoremxaddcom 9982 The extended real addition operation is commutative. (Contributed by NM, 26-Dec-2011.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A +e B )  =  ( B +e A ) )
 
Theoremxaddid1 9983 Extended real version of addrid 8209. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( A +e 0 )  =  A )
 
Theoremxaddid2 9984 Extended real version of addlid 8210. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( A  e.  RR*  ->  ( 0 +e A )  =  A )
 
Theoremxaddid1d 9985  0 is a right identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
 |-  ( ph  ->  A  e.  RR* )   =>    |-  ( ph  ->  ( A +e 0 )  =  A )
 
Theoremxnn0lenn0nn0 9986 An extended nonnegative integer which is less than or equal to a nonnegative integer is a nonnegative integer. (Contributed by AV, 24-Nov-2021.)
 |-  ( ( M  e. NN0*  /\  N  e.  NN0  /\  M  <_  N )  ->  M  e.  NN0 )
 
Theoremxnn0le2is012 9987 An extended nonnegative integer which is less than or equal to 2 is either 0 or 1 or 2. (Contributed by AV, 24-Nov-2021.)
 |-  ( ( N  e. NN0*  /\  N  <_  2 )  ->  ( N  =  0  \/  N  =  1  \/  N  =  2 ) )
 
Theoremxnn0xadd0 9988 The sum of two extended nonnegative integers is  0 iff each of the two extended nonnegative integers is 
0. (Contributed by AV, 14-Dec-2020.)
 |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( ( A +e B )  =  0  <-> 
 ( A  =  0 
 /\  B  =  0 ) ) )
 
Theoremxnegdi 9989 Extended real version of negdi 8328. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  -> 
 -e ( A +e B )  =  (  -e A +e  -e B ) )
 
Theoremxaddass 9990 Associativity of extended real addition. The correct condition here is "it is not the case that both +oo and -oo appear as one of  A ,  B ,  C, i.e.  -.  { +oo , -oo }  C_  { A ,  B ,  C }", but this condition is difficult to work with, so we break the theorem into two parts: this one, where -oo is not present in  A ,  B ,  C, and xaddass2 9991, where +oo is not present. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= -oo )  /\  ( B  e.  RR*  /\  B  =/= -oo )  /\  ( C  e.  RR*  /\  C  =/= -oo ) )  ->  (
 ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
 
Theoremxaddass2 9991 Associativity of extended real addition. See xaddass 9990 for notes on the hypotheses. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  A  =/= +oo )  /\  ( B  e.  RR*  /\  B  =/= +oo )  /\  ( C  e.  RR*  /\  C  =/= +oo ) )  ->  (
 ( A +e B ) +e C )  =  ( A +e ( B +e C ) ) )
 
Theoremxpncan 9992 Extended real version of pncan 8277. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( ( A +e B ) +e  -e B )  =  A )
 
Theoremxnpcan 9993 Extended real version of npcan 8280. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR )  ->  ( ( A +e  -e B ) +e B )  =  A )
 
Theoremxleadd1a 9994 Extended real version of leadd1 8502; note that the converse implication is not true, unlike the real version (for example  0  <  1 but  ( 1 +e +oo )  <_  ( 0 +e +oo )). (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( A +e C )  <_  ( B +e C ) )
 
Theoremxleadd2a 9995 Commuted form of xleadd1a 9994. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  /\  A  <_  B )  ->  ( C +e A )  <_  ( C +e B ) )
 
Theoremxleadd1 9996 Weakened version of xleadd1a 9994 under which the reverse implication is true. (Contributed by Mario Carneiro, 20-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <_  B  <->  ( A +e C )  <_  ( B +e C ) ) )
 
Theoremxltadd1 9997 Extended real version of ltadd1 8501. (Contributed by Mario Carneiro, 23-Aug-2015.) (Revised by Jim Kingdon, 16-Apr-2023.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( A +e C )  <  ( B +e C ) ) )
 
Theoremxltadd2 9998 Extended real version of ltadd2 8491. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR )  ->  ( A  <  B  <->  ( C +e A )  <  ( C +e B ) ) )
 
Theoremxaddge0 9999 The sum of nonnegative extended reals is nonnegative. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( 0 
 <_  A  /\  0  <_  B ) )  -> 
 0  <_  ( A +e B ) )
 
Theoremxle2add 10000 Extended real version of le2add 8516. (Contributed by Mario Carneiro, 23-Aug-2015.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  ->  (
 ( A  <_  C  /\  B  <_  D )  ->  ( A +e B )  <_  ( C +e D ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >