ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexneg Unicode version

Theorem rexneg 9766
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg  |-  ( A  e.  RR  ->  -e
A  =  -u A
)

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 9708 . 2  |-  -e
A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
2 renepnf 7946 . . . 4  |-  ( A  e.  RR  ->  A  =/= +oo )
3 ifnefalse 3531 . . . 4  |-  ( A  =/= +oo  ->  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )  =  if ( A  = -oo , +oo ,  -u A ) )
42, 3syl 14 . . 3  |-  ( A  e.  RR  ->  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )  =  if ( A  = -oo , +oo ,  -u A ) )
5 renemnf 7947 . . . 4  |-  ( A  e.  RR  ->  A  =/= -oo )
6 ifnefalse 3531 . . . 4  |-  ( A  =/= -oo  ->  if ( A  = -oo , +oo ,  -u A )  = 
-u A )
75, 6syl 14 . . 3  |-  ( A  e.  RR  ->  if ( A  = -oo , +oo ,  -u A
)  =  -u A
)
84, 7eqtrd 2198 . 2  |-  ( A  e.  RR  ->  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )  =  -u A )
91, 8syl5eq 2211 1  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136    =/= wne 2336   ifcif 3520   RRcr 7752   +oocpnf 7930   -oocmnf 7931   -ucneg 8070    -ecxne 9705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-pnf 7935  df-mnf 7936  df-xneg 9708
This theorem is referenced by:  xneg0  9767  xnegcl  9768  xnegneg  9769  xltnegi  9771  rexsub  9789  xnegid  9795  xnegdi  9804  xpncan  9807  xnpcan  9808  xposdif  9818  xrmaxaddlem  11201  xrminrecl  11214  xrminrpcl  11215
  Copyright terms: Public domain W3C validator