| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexneg | Unicode version | ||
| Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| rexneg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9929 |
. 2
| |
| 2 | renepnf 8155 |
. . . 4
| |
| 3 | ifnefalse 3590 |
. . . 4
| |
| 4 | 2, 3 | syl 14 |
. . 3
|
| 5 | renemnf 8156 |
. . . 4
| |
| 6 | ifnefalse 3590 |
. . . 4
| |
| 7 | 5, 6 | syl 14 |
. . 3
|
| 8 | 4, 7 | eqtrd 2240 |
. 2
|
| 9 | 1, 8 | eqtrid 2252 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-uni 3865 df-pnf 8144 df-mnf 8145 df-xneg 9929 |
| This theorem is referenced by: xneg0 9988 xnegcl 9989 xnegneg 9990 xltnegi 9992 rexsub 10010 xnegid 10016 xnegdi 10025 xpncan 10028 xnpcan 10029 xposdif 10039 xrmaxaddlem 11686 xrminrecl 11699 xrminrpcl 11700 |
| Copyright terms: Public domain | W3C validator |