Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rexneg | Unicode version |
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
rexneg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9743 | . 2 | |
2 | renepnf 7979 | . . . 4 | |
3 | ifnefalse 3543 | . . . 4 | |
4 | 2, 3 | syl 14 | . . 3 |
5 | renemnf 7980 | . . . 4 | |
6 | ifnefalse 3543 | . . . 4 | |
7 | 5, 6 | syl 14 | . . 3 |
8 | 4, 7 | eqtrd 2208 | . 2 |
9 | 1, 8 | eqtrid 2220 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1353 wcel 2146 wne 2345 cif 3532 cr 7785 cpnf 7963 cmnf 7964 cneg 8103 cxne 9740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-if 3533 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-pnf 7968 df-mnf 7969 df-xneg 9743 |
This theorem is referenced by: xneg0 9802 xnegcl 9803 xnegneg 9804 xltnegi 9806 rexsub 9824 xnegid 9830 xnegdi 9839 xpncan 9842 xnpcan 9843 xposdif 9853 xrmaxaddlem 11236 xrminrecl 11249 xrminrpcl 11250 |
Copyright terms: Public domain | W3C validator |