ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexneg Unicode version

Theorem rexneg 9987
Description: Minus a real number. Remark [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
rexneg  |-  ( A  e.  RR  ->  -e
A  =  -u A
)

Proof of Theorem rexneg
StepHypRef Expression
1 df-xneg 9929 . 2  |-  -e
A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
2 renepnf 8155 . . . 4  |-  ( A  e.  RR  ->  A  =/= +oo )
3 ifnefalse 3590 . . . 4  |-  ( A  =/= +oo  ->  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )  =  if ( A  = -oo , +oo ,  -u A ) )
42, 3syl 14 . . 3  |-  ( A  e.  RR  ->  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )  =  if ( A  = -oo , +oo ,  -u A ) )
5 renemnf 8156 . . . 4  |-  ( A  e.  RR  ->  A  =/= -oo )
6 ifnefalse 3590 . . . 4  |-  ( A  =/= -oo  ->  if ( A  = -oo , +oo ,  -u A )  = 
-u A )
75, 6syl 14 . . 3  |-  ( A  e.  RR  ->  if ( A  = -oo , +oo ,  -u A
)  =  -u A
)
84, 7eqtrd 2240 . 2  |-  ( A  e.  RR  ->  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )  =  -u A )
91, 8eqtrid 2252 1  |-  ( A  e.  RR  ->  -e
A  =  -u A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178    =/= wne 2378   ifcif 3579   RRcr 7959   +oocpnf 8139   -oocmnf 8140   -ucneg 8279    -ecxne 9926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-pnf 8144  df-mnf 8145  df-xneg 9929
This theorem is referenced by:  xneg0  9988  xnegcl  9989  xnegneg  9990  xltnegi  9992  rexsub  10010  xnegid  10016  xnegdi  10025  xpncan  10028  xnpcan  10029  xposdif  10039  xrmaxaddlem  11686  xrminrecl  11699  xrminrpcl  11700
  Copyright terms: Public domain W3C validator