| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegpnf | Unicode version | ||
| Description: Minus |
| Ref | Expression |
|---|---|
| xnegpnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9896 |
. 2
| |
| 2 | eqid 2205 |
. . 3
| |
| 3 | 2 | iftruei 3577 |
. 2
|
| 4 | 1, 3 | eqtri 2226 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 df-xneg 9896 |
| This theorem is referenced by: xnegcl 9956 xnegneg 9957 xltnegi 9959 xnegid 9983 xnegdi 9992 xaddass2 9994 xsubge0 10005 xposdif 10006 xlesubadd 10007 xblss2ps 14909 xblss2 14910 |
| Copyright terms: Public domain | W3C validator |