ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf Unicode version

Theorem xnegpnf 9860
Description: Minus +oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf  |-  -e +oo  = -oo

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9804 . 2  |-  -e +oo  =  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )
2 eqid 2189 . . 3  |- +oo  = +oo
32iftruei 3555 . 2  |-  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )  = -oo
41, 3eqtri 2210 1  |-  -e +oo  = -oo
Colors of variables: wff set class
Syntax hints:    = wceq 1364   ifcif 3549   +oocpnf 8020   -oocmnf 8021   -ucneg 8160    -ecxne 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-if 3550  df-xneg 9804
This theorem is referenced by:  xnegcl  9864  xnegneg  9865  xltnegi  9867  xnegid  9891  xnegdi  9900  xaddass2  9902  xsubge0  9913  xposdif  9914  xlesubadd  9915  xblss2ps  14381  xblss2  14382
  Copyright terms: Public domain W3C validator