| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xnegpnf | Unicode version | ||
| Description: Minus  | 
| Ref | Expression | 
|---|---|
| xnegpnf | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-xneg 9847 | 
. 2
 | |
| 2 | eqid 2196 | 
. . 3
 | |
| 3 | 2 | iftruei 3567 | 
. 2
 | 
| 4 | 1, 3 | eqtri 2217 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 df-xneg 9847 | 
| This theorem is referenced by: xnegcl 9907 xnegneg 9908 xltnegi 9910 xnegid 9934 xnegdi 9943 xaddass2 9945 xsubge0 9956 xposdif 9957 xlesubadd 9958 xblss2ps 14640 xblss2 14641 | 
| Copyright terms: Public domain | W3C validator |