ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf Unicode version

Theorem xnegpnf 9952
Description: Minus +oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf  |-  -e +oo  = -oo

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9896 . 2  |-  -e +oo  =  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )
2 eqid 2205 . . 3  |- +oo  = +oo
32iftruei 3577 . 2  |-  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )  = -oo
41, 3eqtri 2226 1  |-  -e +oo  = -oo
Colors of variables: wff set class
Syntax hints:    = wceq 1373   ifcif 3571   +oocpnf 8106   -oocmnf 8107   -ucneg 8246    -ecxne 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-if 3572  df-xneg 9896
This theorem is referenced by:  xnegcl  9956  xnegneg  9957  xltnegi  9959  xnegid  9983  xnegdi  9992  xaddass2  9994  xsubge0  10005  xposdif  10006  xlesubadd  10007  xblss2ps  14909  xblss2  14910
  Copyright terms: Public domain W3C validator