ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf Unicode version

Theorem xnegpnf 10024
Description: Minus +oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf  |-  -e +oo  = -oo

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9968 . 2  |-  -e +oo  =  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )
2 eqid 2229 . . 3  |- +oo  = +oo
32iftruei 3608 . 2  |-  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )  = -oo
41, 3eqtri 2250 1  |-  -e +oo  = -oo
Colors of variables: wff set class
Syntax hints:    = wceq 1395   ifcif 3602   +oocpnf 8178   -oocmnf 8179   -ucneg 8318    -ecxne 9965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603  df-xneg 9968
This theorem is referenced by:  xnegcl  10028  xnegneg  10029  xltnegi  10031  xnegid  10055  xnegdi  10064  xaddass2  10066  xsubge0  10077  xposdif  10078  xlesubadd  10079  xblss2ps  15078  xblss2  15079
  Copyright terms: Public domain W3C validator