ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegpnf Unicode version

Theorem xnegpnf 9764
Description: Minus +oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.)
Assertion
Ref Expression
xnegpnf  |-  -e +oo  = -oo

Proof of Theorem xnegpnf
StepHypRef Expression
1 df-xneg 9708 . 2  |-  -e +oo  =  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )
2 eqid 2165 . . 3  |- +oo  = +oo
32iftruei 3526 . 2  |-  if ( +oo  = +oo , -oo ,  if ( +oo  = -oo , +oo ,  -u +oo ) )  = -oo
41, 3eqtri 2186 1  |-  -e +oo  = -oo
Colors of variables: wff set class
Syntax hints:    = wceq 1343   ifcif 3520   +oocpnf 7930   -oocmnf 7931   -ucneg 8070    -ecxne 9705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3521  df-xneg 9708
This theorem is referenced by:  xnegcl  9768  xnegneg  9769  xltnegi  9771  xnegid  9795  xnegdi  9804  xaddass2  9806  xsubge0  9817  xposdif  9818  xlesubadd  9819  xblss2ps  13044  xblss2  13045
  Copyright terms: Public domain W3C validator