Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegpnf | Unicode version |
Description: Minus . Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) |
Ref | Expression |
---|---|
xnegpnf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-xneg 9729 | . 2 | |
2 | eqid 2170 | . . 3 | |
3 | 2 | iftruei 3532 | . 2 |
4 | 1, 3 | eqtri 2191 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 cif 3526 cpnf 7951 cmnf 7952 cneg 8091 cxne 9726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-if 3527 df-xneg 9729 |
This theorem is referenced by: xnegcl 9789 xnegneg 9790 xltnegi 9792 xnegid 9816 xnegdi 9825 xaddass2 9827 xsubge0 9838 xposdif 9839 xlesubadd 9840 xblss2ps 13198 xblss2 13199 |
Copyright terms: Public domain | W3C validator |