| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegmnf | Unicode version | ||
| Description: Minus |
| Ref | Expression |
|---|---|
| xnegmnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xneg 9864 |
. 2
| |
| 2 | mnfnepnf 8099 |
. . 3
| |
| 3 | ifnefalse 3573 |
. . 3
| |
| 4 | 2, 3 | ax-mp 5 |
. 2
|
| 5 | eqid 2196 |
. . 3
| |
| 6 | 5 | iftruei 3568 |
. 2
|
| 7 | 1, 4, 6 | 3eqtri 2221 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-un 4469 ax-cnex 7987 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-uni 3841 df-pnf 8080 df-mnf 8081 df-xr 8082 df-xneg 9864 |
| This theorem is referenced by: xnegcl 9924 xnegneg 9925 xltnegi 9927 xnegid 9951 xnegdi 9960 xsubge0 9973 xposdif 9974 |
| Copyright terms: Public domain | W3C validator |