ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegmnf Unicode version

Theorem xnegmnf 9953
Description: Minus -oo. Remark of [BourbakiTop1] p. IV.15. (Contributed by FL, 26-Dec-2011.) (Revised by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegmnf  |-  -e -oo  = +oo

Proof of Theorem xnegmnf
StepHypRef Expression
1 df-xneg 9896 . 2  |-  -e -oo  =  if ( -oo  = +oo , -oo ,  if ( -oo  = -oo , +oo ,  -u -oo ) )
2 mnfnepnf 8130 . . 3  |- -oo  =/= +oo
3 ifnefalse 3582 . . 3  |-  ( -oo  =/= +oo  ->  if ( -oo  = +oo , -oo ,  if ( -oo  = -oo , +oo ,  -u -oo ) )  =  if ( -oo  = -oo , +oo ,  -u -oo )
)
42, 3ax-mp 5 . 2  |-  if ( -oo  = +oo , -oo ,  if ( -oo  = -oo , +oo ,  -u -oo ) )  =  if ( -oo  = -oo , +oo ,  -u -oo )
5 eqid 2205 . . 3  |- -oo  = -oo
65iftruei 3577 . 2  |-  if ( -oo  = -oo , +oo ,  -u -oo )  = +oo
71, 4, 63eqtri 2230 1  |-  -e -oo  = +oo
Colors of variables: wff set class
Syntax hints:    = wceq 1373    =/= wne 2376   ifcif 3571   +oocpnf 8106   -oocmnf 8107   -ucneg 8246    -ecxne 9893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-un 4481  ax-cnex 8018
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-rex 2490  df-rab 2493  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-pnf 8111  df-mnf 8112  df-xr 8113  df-xneg 9896
This theorem is referenced by:  xnegcl  9956  xnegneg  9957  xltnegi  9959  xnegid  9983  xnegdi  9992  xsubge0  10005  xposdif  10006
  Copyright terms: Public domain W3C validator