| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xnegeq | Unicode version | ||
| Description: Equality of two extended
numbers with  | 
| Ref | Expression | 
|---|---|
| xnegeq | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1 2203 | 
. . 3
 | |
| 2 | eqeq1 2203 | 
. . . 4
 | |
| 3 | negeq 8219 | 
. . . 4
 | |
| 4 | 2, 3 | ifbieq2d 3585 | 
. . 3
 | 
| 5 | 1, 4 | ifbieq2d 3585 | 
. 2
 | 
| 6 | df-xneg 9847 | 
. 2
 | |
| 7 | df-xneg 9847 | 
. 2
 | |
| 8 | 5, 6, 7 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-neg 8200 df-xneg 9847 | 
| This theorem is referenced by: xnegcl 9907 xnegneg 9908 xneg11 9909 xltnegi 9910 xnegid 9934 xnegdi 9943 xsubge0 9956 xposdif 9957 xlesubadd 9958 xrnegiso 11427 infxrnegsupex 11428 xrminmax 11430 xrminrecl 11438 xrminadd 11440 xblss2ps 14640 xblss2 14641 | 
| Copyright terms: Public domain | W3C validator |