Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegeq | Unicode version |
Description: Equality of two extended numbers with in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . 3 | |
2 | eqeq1 2172 | . . . 4 | |
3 | negeq 8091 | . . . 4 | |
4 | 2, 3 | ifbieq2d 3544 | . . 3 |
5 | 1, 4 | ifbieq2d 3544 | . 2 |
6 | df-xneg 9708 | . 2 | |
7 | df-xneg 9708 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 cif 3520 cpnf 7930 cmnf 7931 cneg 8070 cxne 9705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-rab 2453 df-v 2728 df-un 3120 df-if 3521 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-neg 8072 df-xneg 9708 |
This theorem is referenced by: xnegcl 9768 xnegneg 9769 xneg11 9770 xltnegi 9771 xnegid 9795 xnegdi 9804 xsubge0 9817 xposdif 9818 xlesubadd 9819 xrnegiso 11203 infxrnegsupex 11204 xrminmax 11206 xrminrecl 11214 xrminadd 11216 xblss2ps 13044 xblss2 13045 |
Copyright terms: Public domain | W3C validator |