| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegeq | Unicode version | ||
| Description: Equality of two extended
numbers with |
| Ref | Expression |
|---|---|
| xnegeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2212 |
. . 3
| |
| 2 | eqeq1 2212 |
. . . 4
| |
| 3 | negeq 8267 |
. . . 4
| |
| 4 | 2, 3 | ifbieq2d 3595 |
. . 3
|
| 5 | 1, 4 | ifbieq2d 3595 |
. 2
|
| 6 | df-xneg 9896 |
. 2
| |
| 7 | df-xneg 9896 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rex 2490 df-rab 2493 df-v 2774 df-un 3170 df-if 3572 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-neg 8248 df-xneg 9896 |
| This theorem is referenced by: xnegcl 9956 xnegneg 9957 xneg11 9958 xltnegi 9959 xnegid 9983 xnegdi 9992 xsubge0 10005 xposdif 10006 xlesubadd 10007 xrnegiso 11606 infxrnegsupex 11607 xrminmax 11609 xrminrecl 11617 xrminadd 11619 xblss2ps 14909 xblss2 14910 |
| Copyright terms: Public domain | W3C validator |