| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xnegeq | Unicode version | ||
| Description: Equality of two extended
numbers with |
| Ref | Expression |
|---|---|
| xnegeq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2236 |
. . 3
| |
| 2 | eqeq1 2236 |
. . . 4
| |
| 3 | negeq 8339 |
. . . 4
| |
| 4 | 2, 3 | ifbieq2d 3627 |
. . 3
|
| 5 | 1, 4 | ifbieq2d 3627 |
. 2
|
| 6 | df-xneg 9968 |
. 2
| |
| 7 | df-xneg 9968 |
. 2
| |
| 8 | 5, 6, 7 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-neg 8320 df-xneg 9968 |
| This theorem is referenced by: xnegcl 10028 xnegneg 10029 xneg11 10030 xltnegi 10031 xnegid 10055 xnegdi 10064 xsubge0 10077 xposdif 10078 xlesubadd 10079 xrnegiso 11773 infxrnegsupex 11774 xrminmax 11776 xrminrecl 11784 xrminadd 11786 xblss2ps 15078 xblss2 15079 |
| Copyright terms: Public domain | W3C validator |