ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnegeq Unicode version

Theorem xnegeq 9350
Description: Equality of two extended numbers with  -e in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xnegeq  |-  ( A  =  B  ->  -e
A  =  -e
B )

Proof of Theorem xnegeq
StepHypRef Expression
1 eqeq1 2095 . . 3  |-  ( A  =  B  ->  ( A  = +oo  <->  B  = +oo ) )
2 eqeq1 2095 . . . 4  |-  ( A  =  B  ->  ( A  = -oo  <->  B  = -oo ) )
3 negeq 7736 . . . 4  |-  ( A  =  B  ->  -u A  =  -u B )
42, 3ifbieq2d 3419 . . 3  |-  ( A  =  B  ->  if ( A  = -oo , +oo ,  -u A
)  =  if ( B  = -oo , +oo ,  -u B ) )
51, 4ifbieq2d 3419 . 2  |-  ( A  =  B  ->  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )  =  if ( B  = +oo , -oo ,  if ( B  = -oo , +oo ,  -u B ) ) )
6 df-xneg 9304 . 2  |-  -e
A  =  if ( A  = +oo , -oo ,  if ( A  = -oo , +oo ,  -u A ) )
7 df-xneg 9304 . 2  |-  -e
B  =  if ( B  = +oo , -oo ,  if ( B  = -oo , +oo ,  -u B ) )
85, 6, 73eqtr4g 2146 1  |-  ( A  =  B  ->  -e
A  =  -e
B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1290   ifcif 3397   +oocpnf 7580   -oocmnf 7581   -ucneg 7715    -ecxne 9301
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-rex 2366  df-rab 2369  df-v 2622  df-un 3004  df-if 3398  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-iota 4993  df-fv 5036  df-ov 5669  df-neg 7717  df-xneg 9304
This theorem is referenced by:  xnegcl  9355  xnegneg  9356  xneg11  9357  xltnegi  9358
  Copyright terms: Public domain W3C validator