Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xnegeq | Unicode version |
Description: Equality of two extended numbers with in front of them. (Contributed by FL, 26-Dec-2011.) (Proof shortened by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xnegeq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . 3 | |
2 | eqeq1 2177 | . . . 4 | |
3 | negeq 8112 | . . . 4 | |
4 | 2, 3 | ifbieq2d 3550 | . . 3 |
5 | 1, 4 | ifbieq2d 3550 | . 2 |
6 | df-xneg 9729 | . 2 | |
7 | df-xneg 9729 | . 2 | |
8 | 5, 6, 7 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cif 3526 cpnf 7951 cmnf 7952 cneg 8091 cxne 9726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-un 3125 df-if 3527 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 df-xneg 9729 |
This theorem is referenced by: xnegcl 9789 xnegneg 9790 xneg11 9791 xltnegi 9792 xnegid 9816 xnegdi 9825 xsubge0 9838 xposdif 9839 xlesubadd 9840 xrnegiso 11225 infxrnegsupex 11226 xrminmax 11228 xrminrecl 11236 xrminadd 11238 xblss2ps 13198 xblss2 13199 |
Copyright terms: Public domain | W3C validator |