| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfandc | Unicode version | ||
| Description: Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 638. (Contributed by Jim Kingdon, 30-Apr-2018.) |
| Ref | Expression |
|---|---|
| dfandc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.2im 638 |
. . . 4
| |
| 2 | 1 | imp 124 |
. . 3
|
| 3 | simplimdc 862 |
. . . . . . 7
| |
| 4 | 3 | adantr 276 |
. . . . . 6
|
| 5 | 4 | imp 124 |
. . . . 5
|
| 6 | simprimdc 861 |
. . . . . . 7
| |
| 7 | 6 | adantl 277 |
. . . . . 6
|
| 8 | 7 | imp 124 |
. . . . 5
|
| 9 | 5, 8 | jca 306 |
. . . 4
|
| 10 | 9 | ex 115 |
. . 3
|
| 11 | 2, 10 | impbid2 143 |
. 2
|
| 12 | 11 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 |
| This theorem is referenced by: pm4.63dc 888 pm4.54dc 904 |
| Copyright terms: Public domain | W3C validator |