Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfandc | Unicode version |
Description: Definition of 'and' in terms of negation and implication, for decidable propositions. The forward direction holds for all propositions, and can (basically) be found at pm3.2im 632. (Contributed by Jim Kingdon, 30-Apr-2018.) |
Ref | Expression |
---|---|
dfandc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2im 632 | . . . 4 | |
2 | 1 | imp 123 | . . 3 |
3 | simplimdc 855 | . . . . . . 7 DECID | |
4 | 3 | adantr 274 | . . . . . 6 DECID DECID |
5 | 4 | imp 123 | . . . . 5 DECID DECID |
6 | simprimdc 854 | . . . . . . 7 DECID | |
7 | 6 | adantl 275 | . . . . . 6 DECID DECID |
8 | 7 | imp 123 | . . . . 5 DECID DECID |
9 | 5, 8 | jca 304 | . . . 4 DECID DECID |
10 | 9 | ex 114 | . . 3 DECID DECID |
11 | 2, 10 | impbid2 142 | . 2 DECID DECID |
12 | 11 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 DECID wdc 829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 |
This theorem is referenced by: pm4.63dc 881 pm4.54dc 897 |
Copyright terms: Public domain | W3C validator |