ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.54dc Unicode version

Theorem pm4.54dc 902
Description: Theorem *4.54 of [WhiteheadRussell] p. 120, for decidable propositions. One form of DeMorgan's law. (Contributed by Jim Kingdon, 2-May-2018.)
Assertion
Ref Expression
pm4.54dc  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  /\ 
ps )  <->  -.  ( ph  \/  -.  ps )
) ) )

Proof of Theorem pm4.54dc
StepHypRef Expression
1 dcn 842 . . . . 5  |-  (DECID  ph  -> DECID  -.  ph )
2 dfandc 884 . . . . 5  |-  (DECID  -.  ph  ->  (DECID  ps  ->  ( ( -.  ph  /\  ps )  <->  -.  ( -.  ph  ->  -. 
ps ) ) ) )
31, 2syl 14 . . . 4  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  /\ 
ps )  <->  -.  ( -.  ph  ->  -.  ps )
) ) )
43imp 124 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  /\  ps )  <->  -.  ( -.  ph  ->  -. 
ps ) ) )
5 pm4.66dc 901 . . . . 5  |-  (DECID  ph  ->  ( ( -.  ph  ->  -. 
ps )  <->  ( ph  \/  -.  ps ) ) )
65adantr 276 . . . 4  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  ->  -.  ps )  <->  (
ph  \/  -.  ps )
) )
76notbid 667 . . 3  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( -.  ( -.  ph  ->  -.  ps )  <->  -.  ( ph  \/  -.  ps ) ) )
84, 7bitrd 188 . 2  |-  ( (DECID  ph  /\ DECID  ps )  ->  ( ( -. 
ph  /\  ps )  <->  -.  ( ph  \/  -.  ps ) ) )
98ex 115 1  |-  (DECID  ph  ->  (DECID  ps 
->  ( ( -.  ph  /\ 
ps )  <->  -.  ( ph  \/  -.  ps )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835
This theorem is referenced by:  pm4.55dc  938
  Copyright terms: Public domain W3C validator