ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dimatis Unicode version

Theorem dimatis 2171
Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some  ph is  ps, and all  ps is  ch, therefore some  ch is  ph. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2154 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
dimatis.maj  |-  E. x
( ph  /\  ps )
dimatis.min  |-  A. x
( ps  ->  ch )
Assertion
Ref Expression
dimatis  |-  E. x
( ch  /\  ph )

Proof of Theorem dimatis
StepHypRef Expression
1 dimatis.maj . 2  |-  E. x
( ph  /\  ps )
2 dimatis.min . . . . 5  |-  A. x
( ps  ->  ch )
32spi 1559 . . . 4  |-  ( ps 
->  ch )
43adantl 277 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
5 simpl 109 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
64, 5jca 306 . 2  |-  ( (
ph  /\  ps )  ->  ( ch  /\  ph ) )
71, 6eximii 1625 1  |-  E. x
( ch  /\  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533  ax-ial 1557
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator