Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fresison | Unicode version |
Description: "Fresison", one of the syllogisms of Aristotelian logic. No is (PeM), and some is (MiS), therefore some is not (SoP). (In Aristotelian notation, EIO-4: PeM and MiS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
fresison.maj | |
fresison.min |
Ref | Expression |
---|---|
fresison |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fresison.min | . 2 | |
2 | simpr 109 | . . 3 | |
3 | fresison.maj | . . . . . 6 | |
4 | 3 | spi 1513 | . . . . 5 |
5 | 4 | con2i 617 | . . . 4 |
6 | 5 | adantr 274 | . . 3 |
7 | 2, 6 | jca 304 | . 2 |
8 | 1, 7 | eximii 1579 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1330 wex 1469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |