ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dimatis GIF version

Theorem dimatis 2195
Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2178 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
dimatis.maj 𝑥(𝜑𝜓)
dimatis.min 𝑥(𝜓𝜒)
Assertion
Ref Expression
dimatis 𝑥(𝜒𝜑)

Proof of Theorem dimatis
StepHypRef Expression
1 dimatis.maj . 2 𝑥(𝜑𝜓)
2 dimatis.min . . . . 5 𝑥(𝜓𝜒)
32spi 1582 . . . 4 (𝜓𝜒)
43adantl 277 . . 3 ((𝜑𝜓) → 𝜒)
5 simpl 109 . . 3 ((𝜑𝜓) → 𝜑)
64, 5jca 306 . 2 ((𝜑𝜓) → (𝜒𝜑))
71, 6eximii 1648 1 𝑥(𝜒𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393  wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-ial 1580
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator