| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dimatis | GIF version | ||
| Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2155 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| dimatis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
| dimatis.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| dimatis | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dimatis.maj | . 2 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
| 2 | dimatis.min | . . . . 5 ⊢ ∀𝑥(𝜓 → 𝜒) | |
| 3 | 2 | spi 1560 | . . . 4 ⊢ (𝜓 → 𝜒) |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 5 | simpl 109 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜑)) |
| 7 | 1, 6 | eximii 1626 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1371 ∃wex 1516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |