| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dimatis | GIF version | ||
| Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2178 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| dimatis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
| dimatis.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| dimatis | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dimatis.maj | . 2 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
| 2 | dimatis.min | . . . . 5 ⊢ ∀𝑥(𝜓 → 𝜒) | |
| 3 | 2 | spi 1582 | . . . 4 ⊢ (𝜓 → 𝜒) |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 5 | simpl 109 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜑)) |
| 7 | 1, 6 | eximii 1648 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 ∃wex 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |