Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dimatis | GIF version |
Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2114 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.) |
Ref | Expression |
---|---|
dimatis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
dimatis.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
Ref | Expression |
---|---|
dimatis | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dimatis.maj | . 2 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
2 | dimatis.min | . . . . 5 ⊢ ∀𝑥(𝜓 → 𝜒) | |
3 | 2 | spi 1524 | . . . 4 ⊢ (𝜓 → 𝜒) |
4 | 3 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
5 | simpl 108 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
6 | 4, 5 | jca 304 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜑)) |
7 | 1, 6 | eximii 1590 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |