| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dimatis | GIF version | ||
| Description: "Dimatis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜓 is 𝜒, therefore some 𝜒 is 𝜑. (In Aristotelian notation, IAI-4: PiM and MaS therefore SiP.) For example, "Some pets are rabbits.", "All rabbits have fur", therefore "Some fur bearing animals are pets". Like darii 2153 with positions interchanged. (Contributed by David A. Wheeler, 28-Aug-2016.) |
| Ref | Expression |
|---|---|
| dimatis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
| dimatis.min | ⊢ ∀𝑥(𝜓 → 𝜒) |
| Ref | Expression |
|---|---|
| dimatis | ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dimatis.maj | . 2 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
| 2 | dimatis.min | . . . . 5 ⊢ ∀𝑥(𝜓 → 𝜒) | |
| 3 | 2 | spi 1558 | . . . 4 ⊢ (𝜓 → 𝜒) |
| 4 | 3 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 5 | simpl 109 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜑) | |
| 6 | 4, 5 | jca 306 | . 2 ⊢ ((𝜑 ∧ 𝜓) → (𝜒 ∧ 𝜑)) |
| 7 | 1, 6 | eximii 1624 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1370 ∃wex 1514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-ial 1556 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |