ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equtrr Unicode version

Theorem equtrr 1698
Description: A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtrr  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )

Proof of Theorem equtrr
StepHypRef Expression
1 equtr 1697 . 2  |-  ( z  =  x  ->  (
x  =  y  -> 
z  =  y ) )
21com12 30 1  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equtr2  1699  equequ2  1701
  Copyright terms: Public domain W3C validator