HomeHome Intuitionistic Logic Explorer
Theorem List (p. 18 of 129)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1701-1800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfald 1701 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y ps )
 
Theoremnfexd 1702 If  x is not free in  ph, it is not free in  E. y ph. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 7-Feb-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y ps )
 
1.3.10  Substitution (without distinct variables)
 
Syntaxwsb 1703 Extend wff definition to include proper substitution (read "the wff that results when  y is properly substituted for  x in wff  ph"). (Contributed by NM, 24-Jan-2006.)
 wff  [ y  /  x ] ph
 
Definitiondf-sb 1704 Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). For our notation, we use  [ y  /  x ] ph to mean "the wff that results when  y is properly substituted for  x in the wff  ph." We can also use  [ y  /  x ] ph in place of the "free for" side condition used in traditional predicate calculus; see, for example, stdpc4 1716.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, " ph ( y ) is the wff that results when  y is properly substituted for  x in  ph ( x )." For example, if the original  ph ( x ) is  x  =  y, then  ph ( y ) is  y  =  y, from which we obtain that  ph ( x ) is  x  =  x. So what exactly does  ph ( x ) mean? Curry's notation solves this problem.

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see theorems sbequ 1779, sbcom2 1923 and sbid2v 1932).

Note that our definition is valid even when  x and  y are replaced with the same variable, as sbid 1715 shows. We achieve this by having  x free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 1927 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 1930.

When  x and  y are distinct, we can express proper substitution with the simpler expressions of sb5 1826 and sb6 1825.

In classical logic, another possible definition is  ( x  =  y  /\  ph )  \/  A. x ( x  =  y  ->  ph ) but we do not have an intuitionistic proof that this is equivalent.

There are no restrictions on any of the variables, including what variables may occur in wff 
ph. (Contributed by NM, 5-Aug-1993.)

 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
 ) )
 
Theoremsbimi 1705 Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.)
 |-  ( ph  ->  ps )   =>    |-  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
 
Theoremsbbii 1706 Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   =>    |-  ( [ y  /  x ] ph  <->  [ y  /  x ] ps )
 
Theoremsb1 1707 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
 
Theoremsb2 1708 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
 
Theoremsbequ1 1709 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  ->  [ y  /  x ] ph )
 )
 
Theoremsbequ2 1710 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( [ y  /  x ] ph  ->  ph )
 )
 
Theoremstdpc7 1711 One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1647.) Translated to traditional notation, it can be read: " x  =  y  ->  ( ph ( x,  x )  ->  ph ( x,  y ) ), provided that  y is free for  x in  ph ( x,  y )." Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
 |-  ( x  =  y 
 ->  ( [ x  /  y ] ph  ->  ph )
 )
 
Theoremsbequ12 1712 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  <->  [ y  /  x ] ph ) )
 
Theoremsbequ12r 1713 An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
 |-  ( x  =  y 
 ->  ( [ x  /  y ] ph  <->  ph ) )
 
Theoremsbequ12a 1714 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( [ y  /  x ] ph  <->  [ x  /  y ] ph ) )
 
Theoremsbid 1715 An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( [ x  /  x ] ph  <->  ph )
 
Theoremstdpc4 1716 The specialization axiom of standard predicate calculus. It states that if a statement  ph holds for all  x, then it also holds for the specific case of  y (properly) substituted for  x. Translated to traditional notation, it can be read: " A. x ph ( x )  ->  ph ( y ), provided that  y is free for  x in  ph (
x )." Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ph  ->  [ y  /  x ] ph )
 
Theoremsbh 1717 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] ph  <->  ph )
 
Theoremsbf 1718 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  x ] ph  <->  ph )
 
Theoremsbf2 1719 Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.)
 |-  ( [ y  /  x ] A. x ph  <->  A. x ph )
 
Theoremsb6x 1720 Equivalence involving substitution for a variable not free. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 )
 
Theoremnfs1f 1721 If  x is not free in  ph, it is not free in  [ y  /  x ] ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ x ph   =>    |- 
 F/ x [ y  /  x ] ph
 
Theoremhbs1f 1722 If  x is not free in  ph, it is not free in  [ y  /  x ] ph. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
 
Theoremsbequ5 1723 Substitution does not change an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 21-Dec-2004.)
 |-  ( [ w  /  z ] A. x  x  =  y  <->  A. x  x  =  y )
 
Theoremsbequ6 1724 Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 14-May-2005.)
 |-  ( [ w  /  z ]  -.  A. x  x  =  y  <->  -.  A. x  x  =  y )
 
Theoremsbt 1725 A substitution into a theorem remains true. (See chvar 1698 and chvarv 1872 for versions using implicit substitition.) (Contributed by NM, 21-Jan-2004.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ph   =>    |- 
 [ y  /  x ] ph
 
Theoremequsb1 1726 Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
 |- 
 [ y  /  x ] x  =  y
 
Theoremequsb2 1727 Substitution applied to an atomic wff. (Contributed by NM, 5-Aug-1993.)
 |- 
 [ y  /  x ] y  =  x
 
Theoremsbiedh 1728 Conversion of implicit substitution to explicit substitution (deduction version of sbieh 1731). New proofs should use sbied 1729 instead. (Contributed by NM, 30-Jun-1994.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ch  ->  A. x ch ) )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( [
 y  /  x ] ps 
 <->  ch ) )
 
Theoremsbied 1729 Conversion of implicit substitution to explicit substitution (deduction version of sbie 1732). (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch ) )
 
Theoremsbiedv 1730* Conversion of implicit substitution to explicit substitution (deduction version of sbie 1732). (Contributed by NM, 7-Jan-2017.)
 |-  ( ( ph  /\  x  =  y )  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( [ y  /  x ] ps  <->  ch ) )
 
Theoremsbieh 1731 Conversion of implicit substitution to explicit substitution. New proofs should use sbie 1732 instead. (Contributed by NM, 30-Jun-1994.) (New usage is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( [ y  /  x ] ph  <->  ps )
 
Theoremsbie 1732 Conversion of implicit substitution to explicit substitution. (Contributed by NM, 30-Jun-1994.) (Revised by Mario Carneiro, 4-Oct-2016.) (Revised by Wolf Lammen, 30-Apr-2018.)
 |- 
 F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( [ y  /  x ] ph  <->  ps )
 
1.3.11  Theorems using axiom ax-11
 
Theoremequs5a 1733 A property related to substitution that unlike equs5 1768 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
 |-  ( E. x ( x  =  y  /\  A. y ph )  ->  A. x ( x  =  y  ->  ph ) )
 
Theoremequs5e 1734 A property related to substitution that unlike equs5 1768 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) (Revised by NM, 3-Feb-2015.)
 |-  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  E. y ph ) )
 
Theoremax11e 1735 Analogue to ax-11 1452 but for existential quantification. (Contributed by Mario Carneiro and Jim Kingdon, 31-Dec-2017.) (Proved by Mario Carneiro, 9-Feb-2018.)
 |-  ( x  =  y 
 ->  ( E. x ( x  =  y  /\  ph )  ->  E. y ph ) )
 
Theoremax10oe 1736 Quantifier Substitution for existential quantifiers. Analogue to ax10o 1661 but for  E. rather than  A.. (Contributed by Jim Kingdon, 21-Dec-2017.)
 |-  ( A. x  x  =  y  ->  ( E. x ps  ->  E. y ps ) )
 
Theoremdrex1 1737 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) (Revised by NM, 3-Feb-2015.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( E. x ph  <->  E. y ps )
 )
 
Theoremdrsb1 1738 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x  x  =  y  ->  ( [ z  /  x ] ph  <->  [ z  /  y ] ph ) )
 
Theoremexdistrfor 1739 Distribution of existential quantifiers, with a bound-variable hypothesis saying that  y is not free in  ph, but  x can be free in  ph (and there is no distinct variable condition on  x and  y). (Contributed by Jim Kingdon, 25-Feb-2018.)
 |-  ( A. x  x  =  y  \/  A. x F/ y ph )   =>    |-  ( E. x E. y (
 ph  /\  ps )  ->  E. x ( ph  /\ 
 E. y ps )
 )
 
Theoremsb4a 1740 A version of sb4 1771 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] A. y ph  ->  A. x ( x  =  y  ->  ph )
 )
 
Theoremequs45f 1741 Two ways of expressing substitution when  y is not free in  ph. (Contributed by NM, 25-Apr-2008.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( E. x ( x  =  y  /\  ph )  <->  A. x ( x  =  y  ->  ph )
 )
 
Theoremsb6f 1742 Equivalence for substitution when  y is not free in  ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 30-Apr-2008.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 )
 
Theoremsb5f 1743 Equivalence for substitution when  y is not free in  ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 18-May-2008.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( [ y  /  x ] ph  <->  E. x ( x  =  y  /\  ph )
 )
 
Theoremsb4e 1744 One direction of a simplified definition of substitution that unlike sb4 1771 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  E. y ph )
 )
 
Theoremhbsb2a 1745 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] A. y ph  ->  A. x [ y  /  x ] ph )
 
Theoremhbsb2e 1746 Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.)
 |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] E. y ph )
 
Theoremhbsb3 1747 If  y is not free in  ph,  x is not free in  [
y  /  x ] ph. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( [ y  /  x ] ph  ->  A. x [ y  /  x ] ph )
 
Theoremnfs1 1748 If  y is not free in  ph,  x is not free in  [
y  /  x ] ph. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ y ph   =>    |- 
 F/ x [ y  /  x ] ph
 
Theoremsbcof2 1749 Version of sbco 1902 where  x is not free in  ph. (Contributed by Jim Kingdon, 28-Dec-2017.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] [ x  /  y ] ph  <->  [ y  /  x ] ph )
 
1.4  Predicate calculus with distinct variables
 
1.4.1  Derive the axiom of distinct variables ax-16
 
Theoremspimv 1750* A version of spim 1684 with a distinct variable requirement instead of a bound-variable hypothesis. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  ->  ps )
 )   =>    |-  ( A. x ph  ->  ps )
 
Theoremaev 1751* A "distinctor elimination" lemma with no restrictions on variables in the consequent, proved without using ax-16 1753. (Contributed by NM, 8-Nov-2006.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
 |-  ( A. x  x  =  y  ->  A. z  w  =  v )
 
Theoremax16 1752* Theorem showing that ax-16 1753 is redundant if ax-17 1474 is included in the axiom system. The important part of the proof is provided by aev 1751.

See ax16ALT 1798 for an alternate proof that does not require ax-10 1451 or ax-12 1457.

This theorem should not be referenced in any proof. Instead, use ax-16 1753 below so that theorems needing ax-16 1753 can be more easily identified. (Contributed by NM, 8-Nov-2006.)

 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
 )
 
Axiomax-16 1753* Axiom of Distinct Variables. The only axiom of predicate calculus requiring that variables be distinct (if we consider ax-17 1474 to be a metatheorem and not an axiom). Axiom scheme C16' in [Megill] p. 448 (p. 16 of the preprint). It apparently does not otherwise appear in the literature but is easily proved from textbook predicate calculus by cases. It is a somewhat bizarre axiom since the antecedent is always false in set theory, but nonetheless it is technically necessary as you can see from its uses.

This axiom is redundant if we include ax-17 1474; see theorem ax16 1752.

This axiom is obsolete and should no longer be used. It is proved above as theorem ax16 1752. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
 )
 
Theoremdveeq2 1754* Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.)
 |-  ( -.  A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y ) )
 
Theoremdveeq2or 1755* Quantifier introduction when one pair of variables is distinct. Like dveeq2 1754 but connecting  A. x x  =  y by a disjunction rather than negation and implication makes the theorem stronger in intuitionistic logic. (Contributed by Jim Kingdon, 1-Feb-2018.)
 |-  ( A. x  x  =  y  \/  F/ x  z  =  y
 )
 
TheoremdvelimfALT2 1756* Proof of dvelimf 1951 using dveeq2 1754 (shown as the last hypothesis) instead of ax-12 1457. This shows that ax-12 1457 could be replaced by dveeq2 1754 (the last hypothesis). (Contributed by Andrew Salmon, 21-Jul-2011.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ps  ->  A. z ps )   &    |-  (
 z  =  y  ->  ( ph  <->  ps ) )   &    |-  ( -.  A. x  x  =  y  ->  ( z  =  y  ->  A. x  z  =  y )
 )   =>    |-  ( -.  A. x  x  =  y  ->  ( ps  ->  A. x ps ) )
 
Theoremnd5 1757* A lemma for proving conditionless ZFC axioms. (Contributed by NM, 8-Jan-2002.)
 |-  ( -.  A. y  y  =  x  ->  ( z  =  y  ->  A. x  z  =  y ) )
 
Theoremexlimdv 1758* Deduction from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 27-Apr-1994.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  ->  ch ) )
 
Theoremax11v2 1759* Recovery of ax11o 1761 from ax11v 1766 without using ax-11 1452. The hypothesis is even weaker than ax11v 1766, with  z both distinct from  x and not occurring in  ph. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1761. (Contributed by NM, 2-Feb-2007.)
 |-  ( x  =  z 
 ->  ( ph  ->  A. x ( x  =  z  -> 
 ph ) ) )   =>    |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  (
 ph  ->  A. x ( x  =  y  ->  ph )
 ) ) )
 
Theoremax11a2 1760* Derive ax-11o 1762 from a hypothesis in the form of ax-11 1452. The hypothesis is even weaker than ax-11 1452, with  z both distinct from  x and not occurring in  ph. Thus the hypothesis provides an alternate axiom that can be used in place of ax11o 1761. (Contributed by NM, 2-Feb-2007.)
 |-  ( x  =  z 
 ->  ( A. z ph  ->  A. x ( x  =  z  ->  ph )
 ) )   =>    |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
 
1.4.2  Derive the obsolete axiom of variable substitution ax-11o
 
Theoremax11o 1761 Derivation of set.mm's original ax-11o 1762 from the shorter ax-11 1452 that has replaced it.

An open problem is whether this theorem can be proved without relying on ax-16 1753 or ax-17 1474.

Normally, ax11o 1761 should be used rather than ax-11o 1762, except by theorems specifically studying the latter's properties. (Contributed by NM, 3-Feb-2007.)

 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
 
Axiomax-11o 1762 Axiom ax-11o 1762 ("o" for "old") was the original version of ax-11 1452, before it was discovered (in Jan. 2007) that the shorter ax-11 1452 could replace it. It appears as Axiom scheme C15' in [Megill] p. 448 (p. 16 of the preprint). It is based on Lemma 16 of [Tarski] p. 70 and Axiom C8 of [Monk2] p. 105, from which it can be proved by cases. To understand this theorem more easily, think of " -.  A. x x  =  y  ->..." as informally meaning "if  x and  y are distinct variables, then..." The antecedent becomes false if the same variable is substituted for  x and  y, ensuring the theorem is sound whenever this is the case. In some later theorems, we call an antecedent of the form  -.  A. x x  =  y a "distinctor."

This axiom is redundant, as shown by theorem ax11o 1761.

This axiom is obsolete and should no longer be used. It is proved above as theorem ax11o 1761. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

 |-  ( -.  A. x  x  =  y  ->  ( x  =  y  ->  ( ph  ->  A. x ( x  =  y  ->  ph ) ) ) )
 
1.4.3  More theorems related to ax-11 and substitution
 
Theoremalbidv 1763* Formula-building rule for universal quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. x ch )
 )
 
Theoremexbidv 1764* Formula-building rule for existential quantifier (deduction form). (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps 
 <->  ch ) )   =>    |-  ( ph  ->  ( E. x ps  <->  E. x ch )
 )
 
Theoremax11b 1765 A bidirectional version of ax-11o 1762. (Contributed by NM, 30-Jun-2006.)
 |-  ( ( -.  A. x  x  =  y  /\  x  =  y
 )  ->  ( ph  <->  A. x ( x  =  y  ->  ph ) ) )
 
Theoremax11v 1766* This is a version of ax-11o 1762 when the variables are distinct. Axiom (C8) of [Monk2] p. 105. (Contributed by NM, 5-Aug-1993.) (Revised by Jim Kingdon, 15-Dec-2017.)
 |-  ( x  =  y 
 ->  ( ph  ->  A. x ( x  =  y  -> 
 ph ) ) )
 
Theoremax11ev 1767* Analogue to ax11v 1766 for existential quantification. (Contributed by Jim Kingdon, 9-Jan-2018.)
 |-  ( x  =  y 
 ->  ( E. x ( x  =  y  /\  ph )  ->  ph ) )
 
Theoremequs5 1768 Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremequs5or 1769 Lemma used in proofs of substitution properties. Like equs5 1768 but, in intuitionistic logic, replacing negation and implication with disjunction makes this a stronger result. (Contributed by Jim Kingdon, 2-Feb-2018.)
 |-  ( A. x  x  =  y  \/  ( E. x ( x  =  y  /\  ph )  ->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremsb3 1770 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A. x  x  =  y  ->  ( E. x ( x  =  y  /\  ph )  ->  [ y  /  x ] ph ) )
 
Theoremsb4 1771 One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A. x  x  =  y  ->  ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph ) ) )
 
Theoremsb4or 1772 One direction of a simplified definition of substitution when variables are distinct. Similar to sb4 1771 but stronger in intuitionistic logic. (Contributed by Jim Kingdon, 2-Feb-2018.)
 |-  ( A. x  x  =  y  \/  A. x ( [ y  /  x ] ph  ->  A. x ( x  =  y  ->  ph ) ) )
 
Theoremsb4b 1773 Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.)
 |-  ( -.  A. x  x  =  y  ->  ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremsb4bor 1774 Simplified definition of substitution when variables are distinct, expressed via disjunction. (Contributed by Jim Kingdon, 18-Mar-2018.)
 |-  ( A. x  x  =  y  \/  A. x ( [ y  /  x ] ph  <->  A. x ( x  =  y  ->  ph )
 ) )
 
Theoremhbsb2 1775 Bound-variable hypothesis builder for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A. x  x  =  y  ->  ( [ y  /  x ] ph  ->  A. x [
 y  /  x ] ph ) )
 
Theoremnfsb2or 1776 Bound-variable hypothesis builder for substitution. Similar to hbsb2 1775 but in intuitionistic logic a disjunction is stronger than an implication. (Contributed by Jim Kingdon, 2-Feb-2018.)
 |-  ( A. x  x  =  y  \/  F/ x [ y  /  x ] ph )
 
Theoremsbequilem 1777 Propositional logic lemma used in the sbequi 1778 proof. (Contributed by Jim Kingdon, 1-Feb-2018.)
 |-  ( ph  \/  ( ps  ->  ( ch  ->  th ) ) )   &    |-  ( ta  \/  ( ps  ->  ( th  ->  et )
 ) )   =>    |-  ( ph  \/  ( ta  \/  ( ps  ->  ( ch  ->  et )
 ) ) )
 
Theoremsbequi 1778 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.) (Proof modified by Jim Kingdon, 1-Feb-2018.)
 |-  ( x  =  y 
 ->  ( [ x  /  z ] ph  ->  [ y  /  z ] ph )
 )
 
Theoremsbequ 1779 An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
 
Theoremdrsb2 1780 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
 |-  ( A. x  x  =  y  ->  ( [ x  /  z ] ph  <->  [ y  /  z ] ph ) )
 
Theoremspsbe 1781 A specialization theorem, mostly the same as Theorem 19.8 of [Margaris] p. 89. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 29-Dec-2017.)
 |-  ( [ y  /  x ] ph  ->  E. x ph )
 
Theoremspsbim 1782 Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
 |-  ( A. x (
 ph  ->  ps )  ->  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
 )
 
Theoremspsbbi 1783 Specialization of biconditional. (Contributed by NM, 5-Aug-1993.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
 |-  ( A. x (
 ph 
 <->  ps )  ->  ( [ y  /  x ] ph  <->  [ y  /  x ] ps ) )
 
Theoremsbbidh 1784 Deduction substituting both sides of a biconditional. New proofs should use sbbid 1785 instead. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch ) )
 
Theoremsbbid 1785 Deduction substituting both sides of a biconditional. (Contributed by NM, 30-Jun-1993.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( ps  <->  ch ) )   =>    |-  ( ph  ->  ( [ y  /  x ] ps  <->  [ y  /  x ] ch ) )
 
Theoremsbequ8 1786 Elimination of equality from antecedent after substitution. (Contributed by NM, 5-Aug-1993.) (Proof revised by Jim Kingdon, 20-Jan-2018.)
 |-  ( [ y  /  x ] ph  <->  [ y  /  x ] ( x  =  y  ->  ph ) )
 
Theoremsbft 1787 Substitution has no effect on a non-free variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.)
 |-  ( F/ x ph  ->  ( [ y  /  x ] ph  <->  ph ) )
 
Theoremsbid2h 1788 An identity law for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )
 
Theoremsbid2 1789 An identity law for substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  x ] [ x  /  y ] ph  <->  ph )
 
Theoremsbidm 1790 An idempotent law for substitution. (Contributed by NM, 30-Jun-1994.) (Proof rewritten by Jim Kingdon, 21-Jan-2018.)
 |-  ( [ y  /  x ] [ y  /  x ] ph  <->  [ y  /  x ] ph )
 
Theoremsb5rf 1791 Reversed substitution. (Contributed by NM, 3-Feb-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( ph  <->  E. y ( y  =  x  /\  [
 y  /  x ] ph ) )
 
Theoremsb6rf 1792 Reversed substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( ph  <->  A. y ( y  =  x  ->  [ y  /  x ] ph )
 )
 
Theoremsb8h 1793 Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( A. x ph  <->  A. y [ y  /  x ] ph )
 
Theoremsb8eh 1794 Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Proof rewritten by Jim Kingdon, 15-Jan-2018.)
 |-  ( ph  ->  A. y ph )   =>    |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
 
Theoremsb8 1795 Substitution of variable in universal quantifier. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
 |- 
 F/ y ph   =>    |-  ( A. x ph  <->  A. y [ y  /  x ] ph )
 
Theoremsb8e 1796 Substitution of variable in existential quantifier. (Contributed by NM, 12-Aug-1993.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Jim Kingdon, 15-Jan-2018.)
 |- 
 F/ y ph   =>    |-  ( E. x ph  <->  E. y [ y  /  x ] ph )
 
1.4.4  Predicate calculus with distinct variables (cont.)
 
Theoremax16i 1797* Inference with ax-16 1753 as its conclusion, that doesn't require ax-10 1451, ax-11 1452, or ax-12 1457 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. (Contributed by NM, 20-May-2008.)
 |-  ( x  =  z 
 ->  ( ph  <->  ps ) )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph ) )
 
Theoremax16ALT 1798* Version of ax16 1752 that doesn't require ax-10 1451 or ax-12 1457 for its proof. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.)
 |-  ( A. x  x  =  y  ->  ( ph  ->  A. x ph )
 )
 
Theoremspv 1799* Specialization, using implicit substitition. (Contributed by NM, 30-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremspimev 1800* Distinct-variable version of spime 1687. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  ->  ps )
 )   =>    |-  ( ph  ->  E. x ps )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12832
  Copyright terms: Public domain < Previous  Next >