HomeHome Intuitionistic Logic Explorer
Theorem List (p. 18 of 160)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 1701-1800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem19.32dc 1701 Theorem 19.32 of [Margaris] p. 90, where  ph is decidable. (Contributed by Jim Kingdon, 4-Jun-2018.)
 |- 
 F/ x ph   =>    |-  (DECID 
 ph  ->  ( A. x ( ph  \/  ps )  <->  (
 ph  \/  A. x ps ) ) )
 
Theorem19.32r 1702 One direction of Theorem 19.32 of [Margaris] p. 90. The converse holds if  ph is decidable, as seen at 19.32dc 1701. (Contributed by Jim Kingdon, 28-Jul-2018.)
 |- 
 F/ x ph   =>    |-  ( ( ph  \/  A. x ps )  ->  A. x ( ph  \/  ps ) )
 
Theorem19.31r 1703 One direction of Theorem 19.31 of [Margaris] p. 90. The converse holds in classical logic, but not intuitionistic logic. (Contributed by Jim Kingdon, 28-Jul-2018.)
 |- 
 F/ x ps   =>    |-  ( ( A. x ph  \/  ps )  ->  A. x ( ph  \/  ps ) )
 
Theorem19.44 1704 Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
 |- 
 F/ x ps   =>    |-  ( E. x ( ph  \/  ps )  <->  ( E. x ph  \/  ps ) )
 
Theorem19.45 1705 Theorem 19.45 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.)
 |- 
 F/ x ph   =>    |-  ( E. x (
 ph  \/  ps )  <->  (
 ph  \/  E. x ps ) )
 
Theorem19.34 1706 Theorem 19.34 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
 |-  ( ( A. x ph 
 \/  E. x ps )  ->  E. x ( ph  \/  ps ) )
 
Theorem19.41h 1707 Theorem 19.41 of [Margaris] p. 90. New proofs should use 19.41 1708 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (New usage is discouraged.)
 |-  ( ps  ->  A. x ps )   =>    |-  ( E. x (
 ph  /\  ps )  <->  ( E. x ph  /\  ps ) )
 
Theorem19.41 1708 Theorem 19.41 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-Jan-2018.)
 |- 
 F/ x ps   =>    |-  ( E. x ( ph  /\  ps )  <->  ( E. x ph  /\  ps ) )
 
Theorem19.42h 1709 Theorem 19.42 of [Margaris] p. 90. New proofs should use 19.42 1710 instead. (Contributed by NM, 18-Aug-1993.) (New usage is discouraged.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( E. x (
 ph  /\  ps )  <->  (
 ph  /\  E. x ps ) )
 
Theorem19.42 1710 Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 18-Aug-1993.)
 |- 
 F/ x ph   =>    |-  ( E. x (
 ph  /\  ps )  <->  (
 ph  /\  E. x ps ) )
 
Theoremexcom13 1711 Swap 1st and 3rd existential quantifiers. (Contributed by NM, 9-Mar-1995.)
 |-  ( E. x E. y E. z ph  <->  E. z E. y E. x ph )
 
Theoremexrot3 1712 Rotate existential quantifiers. (Contributed by NM, 17-Mar-1995.)
 |-  ( E. x E. y E. z ph  <->  E. y E. z E. x ph )
 
Theoremexrot4 1713 Rotate existential quantifiers twice. (Contributed by NM, 9-Mar-1995.)
 |-  ( E. x E. y E. z E. w ph  <->  E. z E. w E. x E. y ph )
 
Theoremnexr 1714 Inference from 19.8a 1612. (Contributed by Jeff Hankins, 26-Jul-2009.)
 |- 
 -.  E. x ph   =>    |- 
 -.  ph
 
Theoremexan 1715 Place a conjunct in the scope of an existential quantifier. (Contributed by NM, 18-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( E. x ph  /\ 
 ps )   =>    |- 
 E. x ( ph  /\ 
 ps )
 
Theoremhbexd 1716 Deduction form of bound-variable hypothesis builder hbex 1658. (Contributed by NM, 2-Jan-2002.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ph  ->  ( ps  ->  A. x ps ) )   =>    |-  ( ph  ->  ( E. y ps  ->  A. x E. y ps ) )
 
Theoremeeor 1717 Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.)
 |- 
 F/ y ph   &    |-  F/ x ps   =>    |-  ( E. x E. y (
 ph  \/  ps )  <->  ( E. x ph  \/  E. y ps ) )
 
1.3.8  Equality theorems without distinct variables
 
Theorema9e 1718 At least one individual exists. This is not a theorem of free logic, which is sound in empty domains. For such a logic, we would add this theorem as an axiom of set theory (Axiom 0 of [Kunen] p. 10). In the system consisting of ax-5 1469 through ax-14 2178 and ax-17 1548, all axioms other than ax-9 1553 are believed to be theorems of free logic, although the system without ax-9 1553 is probably not complete in free logic. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
 |- 
 E. x  x  =  y
 
Theorema9ev 1719* At least one individual exists. Weaker version of a9e 1718. (Contributed by NM, 3-Aug-2017.)
 |- 
 E. x  x  =  y
 
Theoremax9o 1720 An implication related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
 |-  ( A. x ( x  =  y  ->  A. x ph )  ->  ph )
 
Theoremspimfv 1721* Specialization, using implicit substitution. Version of spim 1760 with a disjoint variable condition. See spimv 1833 for another variant. (Contributed by NM, 10-Jan-1993.) (Revised by BJ, 31-May-2019.)
 |- 
 F/ x ps   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremchvarfv 1722* Implicit substitution of  y for  x into a theorem. Version of chvar 1779 with a disjoint variable condition. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by BJ, 31-May-2019.)
 |- 
 F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremequid 1723 Identity law for equality (reflexivity). Lemma 6 of [Tarski] p. 68. This is often an axiom of equality in textbook systems, but we don't need it as an axiom since it can be proved from our other axioms.

This proof is similar to Tarski's and makes use of a dummy variable  y. It also works in intuitionistic logic, unlike some other possible ways of proving this theorem. (Contributed by NM, 1-Apr-2005.)

 |-  x  =  x
 
Theoremnfequid 1724 Bound-variable hypothesis builder for  x  =  x. This theorem tells us that any variable, including  x, is effectively not free in  x  =  x, even though  x is technically free according to the traditional definition of free variable. (Contributed by NM, 13-Jan-2011.) (Revised by NM, 21-Aug-2017.)
 |- 
 F/ y  x  =  x
 
Theoremstdpc6 1725 One of the two equality axioms of standard predicate calculus, called reflexivity of equality. (The other one is stdpc7 1792.) Axiom 6 of [Mendelson] p. 95. Mendelson doesn't say why he prepended the redundant quantifier, but it was probably to be compatible with free logic (which is valid in the empty domain). (Contributed by NM, 16-Feb-2005.)
 |- 
 A. x  x  =  x
 
Theoremequcomi 1726 Commutative law for equality. Lemma 7 of [Tarski] p. 69. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  y  =  x )
 
Theoremax6evr 1727* A commuted form of a9ev 1719. The naming reflects how axioms were numbered in the Metamath Proof Explorer as of 2020 (a numbering which we eventually plan to adopt here too, but until this happens everywhere only some theorems will have it). (Contributed by BJ, 7-Dec-2020.)
 |- 
 E. x  y  =  x
 
Theoremequcom 1728 Commutative law for equality. (Contributed by NM, 20-Aug-1993.)
 |-  ( x  =  y  <-> 
 y  =  x )
 
Theoremequcomd 1729 Deduction form of equcom 1728, symmetry of equality. For the versions for classes, see eqcom 2206 and eqcomd 2210. (Contributed by BJ, 6-Oct-2019.)
 |-  ( ph  ->  x  =  y )   =>    |-  ( ph  ->  y  =  x )
 
Theoremequcoms 1730 An inference commuting equality in antecedent. Used to eliminate the need for a syllogism. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ph )   =>    |-  ( y  =  x 
 ->  ph )
 
Theoremequtr 1731 A transitive law for equality. (Contributed by NM, 23-Aug-1993.)
 |-  ( x  =  y 
 ->  ( y  =  z 
 ->  x  =  z
 ) )
 
Theoremequtrr 1732 A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
 |-  ( x  =  y 
 ->  ( z  =  x 
 ->  z  =  y
 ) )
 
Theoremequtr2 1733 A transitive law for equality. (Contributed by NM, 12-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ( x  =  z  /\  y  =  z )  ->  x  =  y )
 
Theoremequequ1 1734 An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( x  =  z  <-> 
 y  =  z ) )
 
Theoremequequ2 1735 An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( z  =  x  <-> 
 z  =  y ) )
 
Theoremax11i 1736 Inference that has ax-11 1528 (without  A. y) as its conclusion and does not require ax-10 1527, ax-11 1528, or ax12 1534 for its proof. The hypotheses may be eliminable without one or more of these axioms in special cases. Proof similar to Lemma 16 of [Tarski] p. 70. (Contributed by NM, 20-May-2008.)
 |-  ( x  =  y 
 ->  ( ph  <->  ps ) )   &    |-  ( ps  ->  A. x ps )   =>    |-  ( x  =  y  ->  (
 ph  ->  A. x ( x  =  y  ->  ph )
 ) )
 
1.3.9  Axioms ax-10 and ax-11
 
Theoremax10o 1737 Show that ax-10o 1738 can be derived from ax-10 1527. An open problem is whether this theorem can be derived from ax-10 1527 and the others when ax-11 1528 is replaced with ax-11o 1845. See Theorem ax10 1739 for the rederivation of ax-10 1527 from ax10o 1737.

Normally, ax10o 1737 should be used rather than ax-10o 1738, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.)

 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
 
Axiomax-10o 1738 Axiom ax-10o 1738 ("o" for "old") was the original version of ax-10 1527, before it was discovered (in May 2008) that the shorter ax-10 1527 could replace it. It appears as Axiom scheme C11' in [Megill] p. 448 (p. 16 of the preprint).

This axiom is redundant, as shown by Theorem ax10o 1737.

Normally, ax10o 1737 should be used rather than ax-10o 1738, except by theorems specifically studying the latter's properties. (Contributed by NM, 5-Aug-1993.) (New usage is discouraged.)

 |-  ( A. x  x  =  y  ->  ( A. x ph  ->  A. y ph ) )
 
Theoremax10 1739 Rederivation of ax-10 1527 from original version ax-10o 1738. See Theorem ax10o 1737 for the derivation of ax-10o 1738 from ax-10 1527.

This theorem should not be referenced in any proof. Instead, use ax-10 1527 above so that uses of ax-10 1527 can be more easily identified. (Contributed by NM, 16-May-2008.) (New usage is discouraged.)

 |-  ( A. x  x  =  y  ->  A. y  y  =  x )
 
Theoremhbae 1740 All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
 |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
 
Theoremnfae 1741 All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ z A. x  x  =  y
 
Theoremhbaes 1742 Rule that applies hbae 1740 to antecedent. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. z A. x  x  =  y  -> 
 ph )   =>    |-  ( A. x  x  =  y  ->  ph )
 
Theoremhbnae 1743 All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( -.  A. x  x  =  y  ->  A. z  -.  A. x  x  =  y )
 
Theoremnfnae 1744 All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.)
 |- 
 F/ z  -.  A. x  x  =  y
 
Theoremhbnaes 1745 Rule that applies hbnae 1743 to antecedent. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. z  -.  A. x  x  =  y 
 ->  ph )   =>    |-  ( -.  A. x  x  =  y  ->  ph )
 
Theoremnaecoms 1746 A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.)
 |-  ( -.  A. x  x  =  y  ->  ph )   =>    |-  ( -.  A. y  y  =  x  ->  ph )
 
Theoremequs4 1747 Lemma used in proofs of substitution properties. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Mario Carneiro, 20-May-2014.)
 |-  ( A. x ( x  =  y  ->  ph )  ->  E. x ( x  =  y  /\  ph ) )
 
Theoremequsalh 1748 A useful equivalence related to substitution. New proofs should use equsal 1749 instead. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( A. x ( x  =  y  ->  ph )  <->  ps )
 
Theoremequsal 1749 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 5-Feb-2018.)
 |- 
 F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ( x  =  y  -> 
 ph )  <->  ps )
 
Theoremequsex 1750 A useful equivalence related to substitution. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  ( ph  <->  ps ) )   =>    |-  ( E. x ( x  =  y  /\  ph )  <->  ps )
 
Theoremequsexd 1751 Deduction form of equsex 1750. (Contributed by Jim Kingdon, 29-Dec-2017.)
 |-  ( ph  ->  A. x ph )   &    |-  ( ph  ->  ( ch  ->  A. x ch ) )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  ( E. x ( x  =  y  /\  ps )  <->  ch ) )
 
Theoremdral1 1752 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  (
 A. x ph  <->  A. y ps )
 )
 
Theoremdral2 1753 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  (
 A. z ph  <->  A. z ps )
 )
 
Theoremdrex2 1754 Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( E. z ph  <->  E. z ps )
 )
 
Theoremdrnf1 1755 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( F/ x ph  <->  F/ y ps )
 )
 
Theoremdrnf2 1756 Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.)
 |-  ( A. x  x  =  y  ->  ( ph 
 <->  ps ) )   =>    |-  ( A. x  x  =  y  ->  ( F/ z ph  <->  F/ z ps )
 )
 
Theoremspimth 1757 Closed theorem form of spim 1760. (Contributed by NM, 15-Jan-2008.) (New usage is discouraged.)
 |-  ( A. x ( ( ps  ->  A. x ps )  /\  ( x  =  y  ->  ( ph  ->  ps ) ) ) 
 ->  ( A. x ph  ->  ps ) )
 
Theoremspimt 1758 Closed theorem form of spim 1760. (Contributed by NM, 15-Jan-2008.) (Revised by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 24-Feb-2018.)
 |-  ( ( F/ x ps  /\  A. x ( x  =  y  ->  ( ph  ->  ps )
 ) )  ->  ( A. x ph  ->  ps )
 )
 
Theoremspimh 1759 Specialization, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. The spim 1760 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 8-May-2008.) (New usage is discouraged.)
 |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremspim 1760 Specialization, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. The spim 1760 series of theorems requires that only one direction of the substitution hypothesis hold. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
 |- 
 F/ x ps   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  ps )
 
Theoremspimeh 1761 Existential introduction, using implicit substitition. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by NM, 3-Feb-2015.) (New usage is discouraged.)
 |-  ( ph  ->  A. x ph )   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( ph  ->  E. x ps )
 
Theoremspimed 1762 Deduction version of spime 1763. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 19-Feb-2018.)
 |-  ( ch  ->  F/ x ph )   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( ch  ->  (
 ph  ->  E. x ps )
 )
 
Theoremspime 1763 Existential introduction, using implicit substitution. Compare Lemma 14 of [Tarski] p. 70. (Contributed by NM, 7-Aug-1994.) (Revised by Mario Carneiro, 3-Oct-2016.) (Proof shortened by Wolf Lammen, 6-Mar-2018.)
 |- 
 F/ x ph   &    |-  ( x  =  y  ->  ( ph  ->  ps ) )   =>    |-  ( ph  ->  E. x ps )
 
Theoremcbv3 1764 Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1766 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theoremcbv3h 1765 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 12-May-2018.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theoremcbv3v 1766* Rule used to change bound variables, using implicit substitution. Version of cbv3 1764 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph  ->  ps ) )   =>    |-  ( A. x ph 
 ->  A. y ps )
 
Theoremcbv1 1767 Rule used to change bound variables, using implicit substitution. Revised to format hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch ) ) )   =>    |-  ( ph  ->  ( A. x ps  ->  A. y ch ) )
 
Theoremcbv1h 1768 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 13-May-2018.)
 |-  ( ph  ->  ( ps  ->  A. y ps )
 )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch )
 ) )   =>    |-  ( A. x A. y ph  ->  ( A. x ps  ->  A. y ch ) )
 
Theoremcbv1v 1769* Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 16-Jun-2019.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  ->  ch ) ) )   =>    |-  ( ph  ->  ( A. x ps  ->  A. y ch ) )
 
Theoremcbv2h 1770 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  ->  ( ps  ->  A. y ps )
 )   &    |-  ( ph  ->  ( ch  ->  A. x ch )
 )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( A. x A. y ph  ->  ( A. x ps 
 <-> 
 A. y ch )
 )
 
Theoremcbv2 1771 Rule used to change bound variables, using implicit substitution. Revised to align format of hypotheses to common style. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.) (Revised by Wolf Lammen, 13-May-2018.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
Theoremcbv2w 1772* Rule used to change bound variables, using implicit substitution. Version of cbv2 1771 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by GG, 10-Jan-2024.)
 |- 
 F/ x ph   &    |-  F/ y ph   &    |-  ( ph  ->  F/ y ps )   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x ps  <->  A. y ch )
 )
 
Theoremcbvalv1 1773* Rule used to change bound variables, using implicit substitution. Version of cbval 1776 with a disjoint variable condition. See cbvalvw 1942 for a version with two disjoint variable conditions, and cbvalv 1940 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theoremcbvexv1 1774* Rule used to change bound variables, using implicit substitution. Version of cbvex 1778 with a disjoint variable condition. See cbvexvw 1943 for a version with two disjoint variable conditions, and cbvexv 1941 for another variant. (Contributed by NM, 21-Jun-1993.) (Revised by BJ, 31-May-2019.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theoremcbvalh 1775 Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theoremcbval 1776 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Oct-2016.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( A. x ph  <->  A. y ps )
 
Theoremcbvexh 1777 Rule used to change bound variables, using implicit substitition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 3-Feb-2015.)
 |-  ( ph  ->  A. y ph )   &    |-  ( ps  ->  A. x ps )   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theoremcbvex 1778 Rule used to change bound variables, using implicit substitution. (Contributed by NM, 5-Aug-1993.)
 |- 
 F/ y ph   &    |-  F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   =>    |-  ( E. x ph  <->  E. y ps )
 
Theoremchvar 1779 Implicit substitution of  y for  x into a theorem. (Contributed by Raph Levien, 9-Jul-2003.) (Revised by Mario Carneiro, 3-Oct-2016.)
 |- 
 F/ x ps   &    |-  ( x  =  y  ->  (
 ph 
 <->  ps ) )   &    |-  ph   =>    |- 
 ps
 
Theoremequvini 1780 A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require  z to be distinct from  x and  y (making the proof longer). (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.)
 |-  ( x  =  y 
 ->  E. z ( x  =  z  /\  z  =  y ) )
 
Theoremequveli 1781 A variable elimination law for equality with no distinct variable requirements. (Compare equvini 1780.) (Contributed by NM, 1-Mar-2013.) (Revised by NM, 3-Feb-2015.)
 |-  ( A. z ( z  =  x  <->  z  =  y
 )  ->  x  =  y )
 
Theoremnfald 1782 If  x is not free in  ph, it is not free in  A. y ph. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 6-Jan-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y ps )
 
Theoremnfexd 1783 If  x is not free in  ph, it is not free in  E. y ph. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof rewritten by Jim Kingdon, 7-Feb-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y ps )
 
1.3.10  Substitution (without distinct variables)
 
Syntaxwsb 1784 Extend wff definition to include proper substitution (read "the wff that results when  y is properly substituted for  x in wff  ph"). (Contributed by NM, 24-Jan-2006.)
 wff  [ y  /  x ] ph
 
Definitiondf-sb 1785 Define proper substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). For our notation, we use  [ y  /  x ] ph to mean "the wff that results when  y is properly substituted for  x in the wff  ph". We can also use  [ y  /  x ] ph in place of the "free for" side condition used in traditional predicate calculus; see, for example, stdpc4 1797.

Our notation was introduced in Haskell B. Curry's Foundations of Mathematical Logic (1977), p. 316 and is frequently used in textbooks of lambda calculus and combinatory logic. This notation improves the common but ambiguous notation, " ph ( y ) is the wff that results when  y is properly substituted for  x in  ph ( x )". For example, if the original  ph ( x ) is  x  =  y, then  ph ( y ) is  y  =  y, from which we obtain that  ph ( x ) is  x  =  x. So what exactly does  ph ( x ) mean? Curry's notation solves this problem.

In most books, proper substitution has a somewhat complicated recursive definition with multiple cases based on the occurrences of free and bound variables in the wff. Instead, we use a single formula that is exactly equivalent and gives us a direct definition. We later prove that our definition has the properties we expect of proper substitution (see Theorems sbequ 1862, sbcom2 2014 and sbid2v 2023).

Note that our definition is valid even when  x and  y are replaced with the same variable, as sbid 1796 shows. We achieve this by having  x free in the first conjunct and bound in the second. We can also achieve this by using a dummy variable, as the alternate definition dfsb7 2018 shows (which some logicians may prefer because it doesn't mix free and bound variables). Another alternate definition which uses a dummy variable is dfsb7a 2021.

When  x and  y are distinct, we can express proper substitution with the simpler expressions of sb5 1910 and sb6 1909.

In classical logic, another possible definition is  ( x  =  y  /\  ph )  \/  A. x ( x  =  y  ->  ph ) but we do not have an intuitionistic proof that this is equivalent.

There are no restrictions on any of the variables, including what variables may occur in wff 
ph. (Contributed by NM, 5-Aug-1993.)

 |-  ( [ y  /  x ] ph  <->  ( ( x  =  y  ->  ph )  /\  E. x ( x  =  y  /\  ph )
 ) )
 
Theoremsbimi 1786 Infer substitution into antecedent and consequent of an implication. (Contributed by NM, 25-Jun-1998.)
 |-  ( ph  ->  ps )   =>    |-  ( [ y  /  x ] ph  ->  [ y  /  x ] ps )
 
Theoremsbbii 1787 Infer substitution into both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.)
 |-  ( ph  <->  ps )   =>    |-  ( [ y  /  x ] ph  <->  [ y  /  x ] ps )
 
Theoremsb1 1788 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( [ y  /  x ] ph  ->  E. x ( x  =  y  /\  ph ) )
 
Theoremsb2 1789 One direction of a simplified definition of substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ( x  =  y  ->  ph )  ->  [ y  /  x ] ph )
 
Theoremsbequ1 1790 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  ->  [ y  /  x ] ph )
 )
 
Theoremsbequ2 1791 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( [ y  /  x ] ph  ->  ph )
 )
 
Theoremstdpc7 1792 One of the two equality axioms of standard predicate calculus, called substitutivity of equality. (The other one is stdpc6 1725.) Translated to traditional notation, it can be read: " x  =  y  ->  ( ph ( x,  x )  ->  ph ( x,  y ) ), provided that  y is free for  x in  ph ( x,  y )". Axiom 7 of [Mendelson] p. 95. (Contributed by NM, 15-Feb-2005.)
 |-  ( x  =  y 
 ->  ( [ x  /  y ] ph  ->  ph )
 )
 
Theoremsbequ12 1793 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( ph  <->  [ y  /  x ] ph ) )
 
Theoremsbequ12r 1794 An equality theorem for substitution. (Contributed by NM, 6-Oct-2004.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
 |-  ( x  =  y 
 ->  ( [ x  /  y ] ph  <->  ph ) )
 
Theoremsbequ12a 1795 An equality theorem for substitution. (Contributed by NM, 5-Aug-1993.)
 |-  ( x  =  y 
 ->  ( [ y  /  x ] ph  <->  [ x  /  y ] ph ) )
 
Theoremsbid 1796 An identity theorem for substitution. Remark 9.1 in [Megill] p. 447 (p. 15 of the preprint). (Contributed by NM, 5-Aug-1993.)
 |-  ( [ x  /  x ] ph  <->  ph )
 
Theoremstdpc4 1797 The specialization axiom of standard predicate calculus. It states that if a statement  ph holds for all  x, then it also holds for the specific case of  y (properly) substituted for  x. Translated to traditional notation, it can be read: " A. x ph ( x )  ->  ph ( y ), provided that  y is free for  x in  ph (
x )". Axiom 4 of [Mendelson] p. 69. (Contributed by NM, 5-Aug-1993.)
 |-  ( A. x ph  ->  [ y  /  x ] ph )
 
Theoremsbh 1798 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 17-Oct-2004.)
 |-  ( ph  ->  A. x ph )   =>    |-  ( [ y  /  x ] ph  <->  ph )
 
Theoremsbf 1799 Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.)
 |- 
 F/ x ph   =>    |-  ( [ y  /  x ] ph  <->  ph )
 
Theoremsbf2 1800 Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.)
 |-  ( [ y  /  x ] A. x ph  <->  A. x ph )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-15956
  Copyright terms: Public domain < Previous  Next >