ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equtrr GIF version

Theorem equtrr 1698
Description: A transitive law for equality. Lemma L17 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 23-Aug-1993.)
Assertion
Ref Expression
equtrr (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))

Proof of Theorem equtrr
StepHypRef Expression
1 equtr 1697 . 2 (𝑧 = 𝑥 → (𝑥 = 𝑦𝑧 = 𝑦))
21com12 30 1 (𝑥 = 𝑦 → (𝑧 = 𝑥𝑧 = 𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  equtr2  1699  equequ2  1701
  Copyright terms: Public domain W3C validator