| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ2 | Unicode version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1734 |
. 2
| |
| 2 | equtrr 1734 |
. . 3
| |
| 3 | 2 | equcoms 1732 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1473 ax-ie2 1518 ax-8 1528 ax-17 1550 ax-i9 1554 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1844 ax11v 1851 ax11ev 1852 equs5or 1854 eujust 2057 euf 2060 mo23 2097 eleq1w 2268 cbvabw 2330 csbcow 3112 disjiun 4054 iotaval 5262 dffun4f 5306 dff13f 5862 supmoti 7121 isoti 7135 nninfwlpoim 7307 exmidontriim 7368 netap 7401 ennnfonelemr 12909 ctinf 12916 infpn2 12942 lgseisenlem2 15663 |
| Copyright terms: Public domain | W3C validator |