| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > equequ2 | Unicode version | ||
| Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| equequ2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | equtrr 1733 |
. 2
| |
| 2 | equtrr 1733 |
. . 3
| |
| 3 | 2 | equcoms 1731 |
. 2
|
| 4 | 1, 3 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-gen 1472 ax-ie2 1517 ax-8 1527 ax-17 1549 ax-i9 1553 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ax11v2 1843 ax11v 1850 ax11ev 1851 equs5or 1853 eujust 2056 euf 2059 mo23 2095 eleq1w 2266 cbvabw 2328 csbcow 3104 disjiun 4039 iotaval 5243 dffun4f 5287 dff13f 5839 supmoti 7095 isoti 7109 nninfwlpoim 7281 exmidontriim 7337 netap 7366 ennnfonelemr 12794 ctinf 12801 infpn2 12827 lgseisenlem2 15548 |
| Copyright terms: Public domain | W3C validator |