ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ2 Unicode version

Theorem equequ2 1701
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ2  |-  ( x  =  y  ->  (
z  =  x  <->  z  =  y ) )

Proof of Theorem equequ2
StepHypRef Expression
1 equtrr 1698 . 2  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )
2 equtrr 1698 . . 3  |-  ( y  =  x  ->  (
z  =  y  -> 
z  =  x ) )
32equcoms 1696 . 2  |-  ( x  =  y  ->  (
z  =  y  -> 
z  =  x ) )
41, 3impbid 128 1  |-  ( x  =  y  ->  (
z  =  x  <->  z  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-gen 1437  ax-ie2 1482  ax-8 1492  ax-17 1514  ax-i9 1518
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  ax11v2  1808  ax11v  1815  ax11ev  1816  equs5or  1818  eujust  2016  euf  2019  mo23  2055  eleq1w  2227  cbvabw  2289  csbcow  3056  disjiun  3977  iotaval  5164  dffun4f  5204  dff13f  5738  supmoti  6958  isoti  6972  exmidontriim  7181  ennnfonelemr  12356  ctinf  12363  infpn2  12389
  Copyright terms: Public domain W3C validator