ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  equequ2 Unicode version

Theorem equequ2 1724
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
equequ2  |-  ( x  =  y  ->  (
z  =  x  <->  z  =  y ) )

Proof of Theorem equequ2
StepHypRef Expression
1 equtrr 1721 . 2  |-  ( x  =  y  ->  (
z  =  x  -> 
z  =  y ) )
2 equtrr 1721 . . 3  |-  ( y  =  x  ->  (
z  =  y  -> 
z  =  x ) )
32equcoms 1719 . 2  |-  ( x  =  y  ->  (
z  =  y  -> 
z  =  x ) )
41, 3impbid 129 1  |-  ( x  =  y  ->  (
z  =  x  <->  z  =  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-gen 1460  ax-ie2 1505  ax-8 1515  ax-17 1537  ax-i9 1541
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  ax11v2  1831  ax11v  1838  ax11ev  1839  equs5or  1841  eujust  2044  euf  2047  mo23  2083  eleq1w  2254  cbvabw  2316  csbcow  3092  disjiun  4025  iotaval  5227  dffun4f  5271  dff13f  5814  supmoti  7054  isoti  7068  nninfwlpoim  7239  exmidontriim  7287  netap  7316  ennnfonelemr  12583  ctinf  12590  infpn2  12616  lgseisenlem2  15228
  Copyright terms: Public domain W3C validator