Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > equequ2 | Unicode version |
Description: An equivalence law for equality. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
equequ2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equtrr 1698 | . 2 | |
2 | equtrr 1698 | . . 3 | |
3 | 2 | equcoms 1696 | . 2 |
4 | 1, 3 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-gen 1437 ax-ie2 1482 ax-8 1492 ax-17 1514 ax-i9 1518 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: ax11v2 1808 ax11v 1815 ax11ev 1816 equs5or 1818 eujust 2016 euf 2019 mo23 2055 eleq1w 2227 cbvabw 2289 csbcow 3056 disjiun 3977 iotaval 5164 dffun4f 5204 dff13f 5738 supmoti 6958 isoti 6972 exmidontriim 7181 ennnfonelemr 12356 ctinf 12363 infpn2 12389 |
Copyright terms: Public domain | W3C validator |