Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fesapo | Unicode version |
Description: "Fesapo", one of the syllogisms of Aristotelian logic. No is , all is , and exist, therefore some is not . (In Aristotelian notation, EAO-4: PeM and MaS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
fesapo.maj | |
fesapo.min | |
fesapo.e |
Ref | Expression |
---|---|
fesapo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fesapo.e | . 2 | |
2 | fesapo.min | . . . 4 | |
3 | 2 | spi 1529 | . . 3 |
4 | fesapo.maj | . . . . 5 | |
5 | 4 | spi 1529 | . . . 4 |
6 | 5 | con2i 622 | . . 3 |
7 | 3, 6 | jca 304 | . 2 |
8 | 1, 7 | eximii 1595 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1346 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |