Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > calemos | Unicode version |
Description: "Calemos", one of the syllogisms of Aristotelian logic. All is (PaM), no is (MeS), and exist, therefore some is not (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.) |
Ref | Expression |
---|---|
calemos.maj | |
calemos.min | |
calemos.e |
Ref | Expression |
---|---|
calemos |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | calemos.e | . 2 | |
2 | calemos.min | . . . . . 6 | |
3 | 2 | spi 1529 | . . . . 5 |
4 | 3 | con2i 622 | . . . 4 |
5 | calemos.maj | . . . . 5 | |
6 | 5 | spi 1529 | . . . 4 |
7 | 4, 6 | nsyl 623 | . . 3 |
8 | 7 | ancli 321 | . 2 |
9 | 1, 8 | eximii 1595 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wal 1346 wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |