ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  calemos Unicode version

Theorem calemos 2164
Description: "Calemos", one of the syllogisms of Aristotelian logic. All  ph is  ps (PaM), no  ps is  ch (MeS), and  ch exist, therefore some  ch is not  ph (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemos.maj  |-  A. x
( ph  ->  ps )
calemos.min  |-  A. x
( ps  ->  -.  ch )
calemos.e  |-  E. x ch
Assertion
Ref Expression
calemos  |-  E. x
( ch  /\  -.  ph )

Proof of Theorem calemos
StepHypRef Expression
1 calemos.e . 2  |-  E. x ch
2 calemos.min . . . . . 6  |-  A. x
( ps  ->  -.  ch )
32spi 1550 . . . . 5  |-  ( ps 
->  -.  ch )
43con2i 628 . . . 4  |-  ( ch 
->  -.  ps )
5 calemos.maj . . . . 5  |-  A. x
( ph  ->  ps )
65spi 1550 . . . 4  |-  ( ph  ->  ps )
74, 6nsyl 629 . . 3  |-  ( ch 
->  -.  ph )
87ancli 323 . 2  |-  ( ch 
->  ( ch  /\  -.  ph ) )
91, 8eximii 1616 1  |-  E. x
( ch  /\  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104   A.wal 1362   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator