ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  calemos Unicode version

Theorem calemos 2133
Description: "Calemos", one of the syllogisms of Aristotelian logic. All  ph is  ps (PaM), no  ps is  ch (MeS), and  ch exist, therefore some  ch is not  ph (SoP). (In Aristotelian notation, AEO-4: PaM and MeS therefore SoP.) (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
calemos.maj  |-  A. x
( ph  ->  ps )
calemos.min  |-  A. x
( ps  ->  -.  ch )
calemos.e  |-  E. x ch
Assertion
Ref Expression
calemos  |-  E. x
( ch  /\  -.  ph )

Proof of Theorem calemos
StepHypRef Expression
1 calemos.e . 2  |-  E. x ch
2 calemos.min . . . . . 6  |-  A. x
( ps  ->  -.  ch )
32spi 1524 . . . . 5  |-  ( ps 
->  -.  ch )
43con2i 617 . . . 4  |-  ( ch 
->  -.  ps )
5 calemos.maj . . . . 5  |-  A. x
( ph  ->  ps )
65spi 1524 . . . 4  |-  ( ph  ->  ps )
74, 6nsyl 618 . . 3  |-  ( ch 
->  -.  ph )
87ancli 321 . 2  |-  ( ch 
->  ( ch  /\  -.  ph ) )
91, 8eximii 1590 1  |-  E. x
( ch  /\  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator