ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fndmd Unicode version

Theorem fndmd 5360
Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypothesis
Ref Expression
fndmd.1  |-  ( ph  ->  F  Fn  A )
Assertion
Ref Expression
fndmd  |-  ( ph  ->  dom  F  =  A )

Proof of Theorem fndmd
StepHypRef Expression
1 fndmd.1 . 2  |-  ( ph  ->  F  Fn  A )
2 fndm 5358 . 2  |-  ( F  Fn  A  ->  dom  F  =  A )
31, 2syl 14 1  |-  ( ph  ->  dom  F  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   dom cdm 4664    Fn wfn 5254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-fn 5262
This theorem is referenced by:  prdsbas2  12981  prdsplusgval  12985  prdsmulrval  12987
  Copyright terms: Public domain W3C validator