| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | Unicode version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 |
|
| Ref | Expression |
|---|---|
| funfni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5390 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | fndm 5392 |
. . . 4
| |
| 4 | 3 | eleq2d 2277 |
. . 3
|
| 5 | 4 | biimpar 297 |
. 2
|
| 6 | funfni.1 |
. 2
| |
| 7 | 2, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 df-fn 5293 |
| This theorem is referenced by: fneu 5399 fnbrfvb 5642 fvelrnb 5649 fvelimab 5658 fniinfv 5660 fvco2 5671 eqfnfv 5700 fndmdif 5708 fndmin 5710 elpreima 5722 fniniseg 5723 fniniseg2 5725 fnniniseg2 5726 rexsupp 5727 fnopfv 5733 fnfvelrn 5735 rexrn 5740 ralrn 5741 fsn2 5777 fnressn 5793 eufnfv 5838 rexima 5846 ralima 5847 fniunfv 5854 dff13 5860 foeqcnvco 5882 f1eqcocnv 5883 isocnv2 5904 isoini 5910 f1oiso 5918 fnovex 6000 suppssof1 6199 offveqb 6201 1stexg 6276 2ndexg 6277 smoiso 6411 rdgruledefgg 6484 rdgivallem 6490 frectfr 6509 frecrdg 6517 en1 6914 fnfi 7064 ordiso2 7163 cc2lem 7413 slotex 12974 ressbas2d 13015 ressbasid 13017 strressid 13018 ressval3d 13019 prdsex 13216 prdsval 13220 prdsbaslemss 13221 prdsbas 13223 prdsplusg 13224 prdsmulr 13225 pwsbas 13239 pwselbasb 13240 pwssnf1o 13245 imasex 13252 imasival 13253 imasbas 13254 imasplusg 13255 imasmulr 13256 imasaddfn 13264 imasaddval 13265 imasaddf 13266 imasmulfn 13267 imasmulval 13268 imasmulf 13269 qusval 13270 qusex 13272 qusaddvallemg 13280 qusaddflemg 13281 qusaddval 13282 qusaddf 13283 qusmulval 13284 qusmulf 13285 xpsfeq 13292 xpsval 13299 ismgm 13304 plusffvalg 13309 grpidvalg 13320 fn0g 13322 fngsum 13335 igsumvalx 13336 gsumfzval 13338 gsumress 13342 gsum0g 13343 issgrp 13350 ismnddef 13365 issubmnd 13389 ress0g 13390 ismhm 13408 mhmex 13409 issubm 13419 0mhm 13433 grppropstrg 13466 grpinvfvalg 13489 grpinvval 13490 grpinvfng 13491 grpsubfvalg 13492 grpsubval 13493 grpressid 13508 grplactfval 13548 qusgrp2 13564 mulgfvalg 13572 mulgval 13573 mulgex 13574 mulgfng 13575 issubg 13624 subgex 13627 issubg2m 13640 isnsg 13653 releqgg 13671 eqgex 13672 eqgfval 13673 eqgen 13678 isghm 13694 ablressid 13786 mgptopng 13806 isrng 13811 rngressid 13831 qusrng 13835 dfur2g 13839 issrg 13842 isring 13877 ringidss 13906 ringressid 13940 qusring2 13943 reldvdsrsrg 13969 dvdsrvald 13970 dvdsrex 13975 unitgrp 13993 unitabl 13994 invrfvald 13999 unitlinv 14003 unitrinv 14004 dvrfvald 14010 rdivmuldivd 14021 invrpropdg 14026 dfrhm2 14031 rhmex 14034 rhmunitinv 14055 isnzr2 14061 issubrng 14076 issubrg 14098 subrgugrp 14117 rrgval 14139 isdomn 14146 aprval 14159 aprap 14163 islmod 14168 scaffvalg 14183 rmodislmod 14228 lssex 14231 lsssetm 14233 islssm 14234 islssmg 14235 islss3 14256 lspfval 14265 lspval 14267 lspcl 14268 lspex 14272 sraval 14314 sralemg 14315 srascag 14319 sravscag 14320 sraipg 14321 sraex 14323 rlmsubg 14335 rlmvnegg 14342 ixpsnbasval 14343 lidlex 14350 rspex 14351 lidlss 14353 lidlrsppropdg 14372 qusrhm 14405 mopnset 14429 psrval 14543 fnpsr 14544 psrbasg 14551 psrelbas 14552 psrplusgg 14555 psraddcl 14557 psr0cl 14558 psrnegcl 14560 psr1clfi 14565 mplvalcoe 14567 fnmpl 14570 mplplusgg 14580 vtxvalg 15730 vtxex 15732 |
| Copyright terms: Public domain | W3C validator |