![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfni | Unicode version |
Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
Ref | Expression |
---|---|
funfni.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
funfni |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnfun 5351 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | fndm 5353 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | eleq2d 2263 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 4 | biimpar 297 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | funfni.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 2, 5, 6 | syl2anc 411 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 df-fn 5257 |
This theorem is referenced by: fneu 5358 fnbrfvb 5597 fvelrnb 5604 fvelimab 5613 fniinfv 5615 fvco2 5626 eqfnfv 5655 fndmdif 5663 fndmin 5665 elpreima 5677 fniniseg 5678 fniniseg2 5680 fnniniseg2 5681 rexsupp 5682 fnopfv 5688 fnfvelrn 5690 rexrn 5695 ralrn 5696 fsn2 5732 fnressn 5744 eufnfv 5789 rexima 5797 ralima 5798 fniunfv 5805 dff13 5811 foeqcnvco 5833 f1eqcocnv 5834 isocnv2 5855 isoini 5861 f1oiso 5869 fnovex 5951 suppssof1 6148 offveqb 6150 1stexg 6220 2ndexg 6221 smoiso 6355 rdgruledefgg 6428 rdgivallem 6434 frectfr 6453 frecrdg 6461 en1 6853 fnfi 6995 ordiso2 7094 cc2lem 7326 slotex 12645 ressbas2d 12686 ressbasid 12688 strressid 12689 ressval3d 12690 prdsex 12880 imasex 12888 imasival 12889 imasbas 12890 imasplusg 12891 imasmulr 12892 imasaddfn 12900 imasaddval 12901 imasaddf 12902 imasmulfn 12903 imasmulval 12904 imasmulf 12905 qusval 12906 qusex 12908 qusaddvallemg 12916 qusaddflemg 12917 qusaddval 12918 qusaddf 12919 qusmulval 12920 qusmulf 12921 xpsfeq 12928 xpsval 12935 ismgm 12940 plusffvalg 12945 grpidvalg 12956 fn0g 12958 fngsum 12971 igsumvalx 12972 gsumfzval 12974 gsumress 12978 gsum0g 12979 issgrp 12986 ismnddef 12999 issubmnd 13023 ress0g 13024 ismhm 13033 mhmex 13034 issubm 13044 0mhm 13058 grppropstrg 13091 grpinvfvalg 13114 grpinvval 13115 grpinvfng 13116 grpsubfvalg 13117 grpsubval 13118 grpressid 13133 grplactfval 13173 qusgrp2 13183 mulgfvalg 13191 mulgval 13192 mulgex 13193 mulgfng 13194 issubg 13243 subgex 13246 issubg2m 13259 isnsg 13272 releqgg 13290 eqgex 13291 eqgfval 13292 eqgen 13297 isghm 13313 ablressid 13405 mgptopng 13425 isrng 13430 rngressid 13450 qusrng 13454 dfur2g 13458 issrg 13461 isring 13496 ringidss 13525 ringressid 13559 qusring2 13562 reldvdsrsrg 13588 dvdsrvald 13589 dvdsrex 13594 unitgrp 13612 unitabl 13613 invrfvald 13618 unitlinv 13622 unitrinv 13623 dvrfvald 13629 rdivmuldivd 13640 invrpropdg 13645 dfrhm2 13650 rhmex 13653 rhmunitinv 13674 isnzr2 13680 issubrng 13695 issubrg 13717 subrgugrp 13736 rrgval 13758 isdomn 13765 aprval 13778 aprap 13782 islmod 13787 scaffvalg 13802 rmodislmod 13847 lssex 13850 lsssetm 13852 islssm 13853 islssmg 13854 islss3 13875 lspfval 13884 lspval 13886 lspcl 13887 lspex 13891 sraval 13933 sralemg 13934 srascag 13938 sravscag 13939 sraipg 13940 sraex 13942 rlmsubg 13954 rlmvnegg 13961 ixpsnbasval 13962 lidlex 13969 rspex 13970 lidlss 13972 lidlrsppropdg 13991 qusrhm 14024 psrval 14152 fnpsr 14153 psrbasg 14159 psrelbas 14160 psrplusgg 14162 psraddcl 14164 |
Copyright terms: Public domain | W3C validator |