| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | Unicode version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 |
|
| Ref | Expression |
|---|---|
| funfni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5356 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | fndm 5358 |
. . . 4
| |
| 4 | 3 | eleq2d 2266 |
. . 3
|
| 5 | 4 | biimpar 297 |
. 2
|
| 6 | funfni.1 |
. 2
| |
| 7 | 2, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 df-fn 5262 |
| This theorem is referenced by: fneu 5365 fnbrfvb 5604 fvelrnb 5611 fvelimab 5620 fniinfv 5622 fvco2 5633 eqfnfv 5662 fndmdif 5670 fndmin 5672 elpreima 5684 fniniseg 5685 fniniseg2 5687 fnniniseg2 5688 rexsupp 5689 fnopfv 5695 fnfvelrn 5697 rexrn 5702 ralrn 5703 fsn2 5739 fnressn 5751 eufnfv 5796 rexima 5804 ralima 5805 fniunfv 5812 dff13 5818 foeqcnvco 5840 f1eqcocnv 5841 isocnv2 5862 isoini 5868 f1oiso 5876 fnovex 5958 suppssof1 6157 offveqb 6159 1stexg 6234 2ndexg 6235 smoiso 6369 rdgruledefgg 6442 rdgivallem 6448 frectfr 6467 frecrdg 6475 en1 6867 fnfi 7011 ordiso2 7110 cc2lem 7351 slotex 12732 ressbas2d 12773 ressbasid 12775 strressid 12776 ressval3d 12777 prdsex 12973 prdsval 12977 prdsbaslemss 12978 prdsbas 12980 prdsplusg 12981 prdsmulr 12982 pwsbas 12996 pwselbasb 12997 pwssnf1o 13002 imasex 13009 imasival 13010 imasbas 13011 imasplusg 13012 imasmulr 13013 imasaddfn 13021 imasaddval 13022 imasaddf 13023 imasmulfn 13024 imasmulval 13025 imasmulf 13026 qusval 13027 qusex 13029 qusaddvallemg 13037 qusaddflemg 13038 qusaddval 13039 qusaddf 13040 qusmulval 13041 qusmulf 13042 xpsfeq 13049 xpsval 13056 ismgm 13061 plusffvalg 13066 grpidvalg 13077 fn0g 13079 fngsum 13092 igsumvalx 13093 gsumfzval 13095 gsumress 13099 gsum0g 13100 issgrp 13107 ismnddef 13122 issubmnd 13146 ress0g 13147 ismhm 13165 mhmex 13166 issubm 13176 0mhm 13190 grppropstrg 13223 grpinvfvalg 13246 grpinvval 13247 grpinvfng 13248 grpsubfvalg 13249 grpsubval 13250 grpressid 13265 grplactfval 13305 qusgrp2 13321 mulgfvalg 13329 mulgval 13330 mulgex 13331 mulgfng 13332 issubg 13381 subgex 13384 issubg2m 13397 isnsg 13410 releqgg 13428 eqgex 13429 eqgfval 13430 eqgen 13435 isghm 13451 ablressid 13543 mgptopng 13563 isrng 13568 rngressid 13588 qusrng 13592 dfur2g 13596 issrg 13599 isring 13634 ringidss 13663 ringressid 13697 qusring2 13700 reldvdsrsrg 13726 dvdsrvald 13727 dvdsrex 13732 unitgrp 13750 unitabl 13751 invrfvald 13756 unitlinv 13760 unitrinv 13761 dvrfvald 13767 rdivmuldivd 13778 invrpropdg 13783 dfrhm2 13788 rhmex 13791 rhmunitinv 13812 isnzr2 13818 issubrng 13833 issubrg 13855 subrgugrp 13874 rrgval 13896 isdomn 13903 aprval 13916 aprap 13920 islmod 13925 scaffvalg 13940 rmodislmod 13985 lssex 13988 lsssetm 13990 islssm 13991 islssmg 13992 islss3 14013 lspfval 14022 lspval 14024 lspcl 14025 lspex 14029 sraval 14071 sralemg 14072 srascag 14076 sravscag 14077 sraipg 14078 sraex 14080 rlmsubg 14092 rlmvnegg 14099 ixpsnbasval 14100 lidlex 14107 rspex 14108 lidlss 14110 lidlrsppropdg 14129 qusrhm 14162 mopnset 14186 psrval 14300 fnpsr 14301 psrbasg 14308 psrelbas 14309 psrplusgg 14312 psraddcl 14314 psr0cl 14315 psrnegcl 14317 psr1clfi 14322 mplvalcoe 14324 fnmpl 14327 mplplusgg 14337 |
| Copyright terms: Public domain | W3C validator |