| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | Unicode version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 |
|
| Ref | Expression |
|---|---|
| funfni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5417 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | fndm 5419 |
. . . 4
| |
| 4 | 3 | eleq2d 2299 |
. . 3
|
| 5 | 4 | biimpar 297 |
. 2
|
| 6 | funfni.1 |
. 2
| |
| 7 | 2, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 df-fn 5320 |
| This theorem is referenced by: fneu 5426 fnbrfvb 5671 fvelrnb 5680 fvelimab 5689 fniinfv 5691 fvco2 5702 eqfnfv 5731 fndmdif 5739 fndmin 5741 elpreima 5753 fniniseg 5754 fniniseg2 5756 fnniniseg2 5757 rexsupp 5758 fnopfv 5764 fnfvelrn 5766 rexrn 5771 ralrn 5772 fsn2 5808 fnressn 5824 eufnfv 5869 rexima 5877 ralima 5878 fniunfv 5885 dff13 5891 foeqcnvco 5913 f1eqcocnv 5914 isocnv2 5935 isoini 5941 f1oiso 5949 fnovex 6033 suppssof1 6234 offveqb 6236 1stexg 6311 2ndexg 6312 smoiso 6446 rdgruledefgg 6519 rdgivallem 6525 frectfr 6544 frecrdg 6552 en1 6949 fnfi 7099 ordiso2 7198 cc2lem 7448 slotex 13054 ressbas2d 13096 ressbasid 13098 strressid 13099 ressval3d 13100 prdsex 13297 prdsval 13301 prdsbaslemss 13302 prdsbas 13304 prdsplusg 13305 prdsmulr 13306 pwsbas 13320 pwselbasb 13321 pwssnf1o 13326 imasex 13333 imasival 13334 imasbas 13335 imasplusg 13336 imasmulr 13337 imasaddfn 13345 imasaddval 13346 imasaddf 13347 imasmulfn 13348 imasmulval 13349 imasmulf 13350 qusval 13351 qusex 13353 qusaddvallemg 13361 qusaddflemg 13362 qusaddval 13363 qusaddf 13364 qusmulval 13365 qusmulf 13366 xpsfeq 13373 xpsval 13380 ismgm 13385 plusffvalg 13390 grpidvalg 13401 fn0g 13403 fngsum 13416 igsumvalx 13417 gsumfzval 13419 gsumress 13423 gsum0g 13424 issgrp 13431 ismnddef 13446 issubmnd 13470 ress0g 13471 ismhm 13489 mhmex 13490 issubm 13500 0mhm 13514 grppropstrg 13547 grpinvfvalg 13570 grpinvval 13571 grpinvfng 13572 grpsubfvalg 13573 grpsubval 13574 grpressid 13589 grplactfval 13629 qusgrp2 13645 mulgfvalg 13653 mulgval 13654 mulgex 13655 mulgfng 13656 issubg 13705 subgex 13708 issubg2m 13721 isnsg 13734 releqgg 13752 eqgex 13753 eqgfval 13754 eqgen 13759 isghm 13775 ablressid 13867 mgptopng 13887 isrng 13892 rngressid 13912 qusrng 13916 dfur2g 13920 issrg 13923 isring 13958 ringidss 13987 ringressid 14021 qusring2 14024 reldvdsrsrg 14050 dvdsrvald 14051 dvdsrex 14056 unitgrp 14074 unitabl 14075 invrfvald 14080 unitlinv 14084 unitrinv 14085 dvrfvald 14091 rdivmuldivd 14102 invrpropdg 14107 dfrhm2 14112 rhmex 14115 rhmunitinv 14136 isnzr2 14142 issubrng 14157 issubrg 14179 subrgugrp 14198 rrgval 14220 isdomn 14227 aprval 14240 aprap 14244 islmod 14249 scaffvalg 14264 rmodislmod 14309 lssex 14312 lsssetm 14314 islssm 14315 islssmg 14316 islss3 14337 lspfval 14346 lspval 14348 lspcl 14349 lspex 14353 sraval 14395 sralemg 14396 srascag 14400 sravscag 14401 sraipg 14402 sraex 14404 rlmsubg 14416 rlmvnegg 14423 ixpsnbasval 14424 lidlex 14431 rspex 14432 lidlss 14434 lidlrsppropdg 14453 qusrhm 14486 mopnset 14510 psrval 14624 fnpsr 14625 psrbasg 14632 psrelbas 14633 psrplusgg 14636 psraddcl 14638 psr0cl 14639 psrnegcl 14641 psr1clfi 14646 mplvalcoe 14648 fnmpl 14651 mplplusgg 14661 vtxvalg 15811 vtxex 15813 |
| Copyright terms: Public domain | W3C validator |