| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > funfni | Unicode version | ||
| Description: Inference to convert a function and domain antecedent. (Contributed by NM, 22-Apr-2004.) |
| Ref | Expression |
|---|---|
| funfni.1 |
|
| Ref | Expression |
|---|---|
| funfni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnfun 5371 |
. . 3
| |
| 2 | 1 | adantr 276 |
. 2
|
| 3 | fndm 5373 |
. . . 4
| |
| 4 | 3 | eleq2d 2275 |
. . 3
|
| 5 | 4 | biimpar 297 |
. 2
|
| 6 | funfni.1 |
. 2
| |
| 7 | 2, 5, 6 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 df-fn 5274 |
| This theorem is referenced by: fneu 5380 fnbrfvb 5619 fvelrnb 5626 fvelimab 5635 fniinfv 5637 fvco2 5648 eqfnfv 5677 fndmdif 5685 fndmin 5687 elpreima 5699 fniniseg 5700 fniniseg2 5702 fnniniseg2 5703 rexsupp 5704 fnopfv 5710 fnfvelrn 5712 rexrn 5717 ralrn 5718 fsn2 5754 fnressn 5770 eufnfv 5815 rexima 5823 ralima 5824 fniunfv 5831 dff13 5837 foeqcnvco 5859 f1eqcocnv 5860 isocnv2 5881 isoini 5887 f1oiso 5895 fnovex 5977 suppssof1 6176 offveqb 6178 1stexg 6253 2ndexg 6254 smoiso 6388 rdgruledefgg 6461 rdgivallem 6467 frectfr 6486 frecrdg 6494 en1 6891 fnfi 7038 ordiso2 7137 cc2lem 7378 slotex 12859 ressbas2d 12900 ressbasid 12902 strressid 12903 ressval3d 12904 prdsex 13101 prdsval 13105 prdsbaslemss 13106 prdsbas 13108 prdsplusg 13109 prdsmulr 13110 pwsbas 13124 pwselbasb 13125 pwssnf1o 13130 imasex 13137 imasival 13138 imasbas 13139 imasplusg 13140 imasmulr 13141 imasaddfn 13149 imasaddval 13150 imasaddf 13151 imasmulfn 13152 imasmulval 13153 imasmulf 13154 qusval 13155 qusex 13157 qusaddvallemg 13165 qusaddflemg 13166 qusaddval 13167 qusaddf 13168 qusmulval 13169 qusmulf 13170 xpsfeq 13177 xpsval 13184 ismgm 13189 plusffvalg 13194 grpidvalg 13205 fn0g 13207 fngsum 13220 igsumvalx 13221 gsumfzval 13223 gsumress 13227 gsum0g 13228 issgrp 13235 ismnddef 13250 issubmnd 13274 ress0g 13275 ismhm 13293 mhmex 13294 issubm 13304 0mhm 13318 grppropstrg 13351 grpinvfvalg 13374 grpinvval 13375 grpinvfng 13376 grpsubfvalg 13377 grpsubval 13378 grpressid 13393 grplactfval 13433 qusgrp2 13449 mulgfvalg 13457 mulgval 13458 mulgex 13459 mulgfng 13460 issubg 13509 subgex 13512 issubg2m 13525 isnsg 13538 releqgg 13556 eqgex 13557 eqgfval 13558 eqgen 13563 isghm 13579 ablressid 13671 mgptopng 13691 isrng 13696 rngressid 13716 qusrng 13720 dfur2g 13724 issrg 13727 isring 13762 ringidss 13791 ringressid 13825 qusring2 13828 reldvdsrsrg 13854 dvdsrvald 13855 dvdsrex 13860 unitgrp 13878 unitabl 13879 invrfvald 13884 unitlinv 13888 unitrinv 13889 dvrfvald 13895 rdivmuldivd 13906 invrpropdg 13911 dfrhm2 13916 rhmex 13919 rhmunitinv 13940 isnzr2 13946 issubrng 13961 issubrg 13983 subrgugrp 14002 rrgval 14024 isdomn 14031 aprval 14044 aprap 14048 islmod 14053 scaffvalg 14068 rmodislmod 14113 lssex 14116 lsssetm 14118 islssm 14119 islssmg 14120 islss3 14141 lspfval 14150 lspval 14152 lspcl 14153 lspex 14157 sraval 14199 sralemg 14200 srascag 14204 sravscag 14205 sraipg 14206 sraex 14208 rlmsubg 14220 rlmvnegg 14227 ixpsnbasval 14228 lidlex 14235 rspex 14236 lidlss 14238 lidlrsppropdg 14257 qusrhm 14290 mopnset 14314 psrval 14428 fnpsr 14429 psrbasg 14436 psrelbas 14437 psrplusgg 14440 psraddcl 14442 psr0cl 14443 psrnegcl 14445 psr1clfi 14450 mplvalcoe 14452 fnmpl 14455 mplplusgg 14465 vtxvalg 15615 |
| Copyright terms: Public domain | W3C validator |