| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndmd | GIF version | ||
| Description: The domain of a function. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| fndmd.1 | ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| Ref | Expression |
|---|---|
| fndmd | ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fndmd.1 | . 2 ⊢ (𝜑 → 𝐹 Fn 𝐴) | |
| 2 | fndm 5358 | . 2 ⊢ (𝐹 Fn 𝐴 → dom 𝐹 = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 dom cdm 4664 Fn wfn 5254 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5262 |
| This theorem is referenced by: prdsbas2 12981 prdsplusgval 12985 prdsmulrval 12987 |
| Copyright terms: Public domain | W3C validator |