| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | Unicode version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5275 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5275 |
| This theorem is referenced by: fndmi 5375 fndmd 5376 funfni 5377 fndmu 5378 fnbr 5379 fnco 5385 fnresdm 5386 fnresdisj 5387 fnssresb 5389 fn0 5397 fnimadisj 5398 fnimaeq0 5399 dmmpti 5407 fdm 5433 f1dm 5488 f1odm 5528 f1o00 5559 fvelimab 5637 fvun1 5647 eqfnfv2 5680 fndmdif 5687 fneqeql2 5691 elpreima 5701 fsn2 5756 fconst3m 5805 fconst4m 5806 fnfvima 5821 funiunfvdm 5834 fnunirn 5838 dff13 5839 f1eqcocnv 5862 oprssov 6090 offval 6168 ofrfval 6169 fnexALT 6198 dmmpo 6292 dmmpoga 6296 tposfo2 6355 smodm2 6383 smoel2 6391 tfrlem5 6402 tfrlem8 6406 tfrlem9 6407 tfrlemisucaccv 6413 tfrlemiubacc 6418 tfrexlem 6422 tfri2d 6424 tfr1onlemsucaccv 6429 tfr1onlemubacc 6434 tfrcllemsucaccv 6442 tfri2 6454 rdgivallem 6469 ixpprc 6808 ixpssmap2g 6816 ixpssmapg 6817 bren 6837 fndmeng 6904 caseinl 7195 caseinr 7196 cc2lem 7380 dmaddpi 7440 dmmulpi 7441 hashinfom 10925 shftfn 11168 phimullem 12580 ennnfonelemhom 12819 qnnen 12835 fnpr2ob 13205 cldrcl 14607 neiss2 14647 txdis1cn 14783 |
| Copyright terms: Public domain | W3C validator |