| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | Unicode version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5321 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5321 |
| This theorem is referenced by: fndmi 5421 fndmd 5422 funfni 5423 fndmu 5424 fnbr 5425 fnco 5431 fnresdm 5432 fnresdisj 5433 fnssresb 5435 fn0 5443 fnimadisj 5444 fnimaeq0 5445 dmmpti 5453 fdm 5479 f1dm 5536 f1odm 5576 f1o00 5608 fvelimab 5690 fvun1 5700 eqfnfv2 5733 fndmdif 5740 fneqeql2 5744 elpreima 5754 fsn2 5809 fconst3m 5858 fconst4m 5859 fnfvima 5874 funiunfvdm 5887 fnunirn 5891 dff13 5892 f1eqcocnv 5915 oprssov 6147 offval 6226 ofrfval 6227 fnexALT 6256 dmmpo 6350 dmmpoga 6354 tposfo2 6413 smodm2 6441 smoel2 6449 tfrlem5 6460 tfrlem8 6464 tfrlem9 6465 tfrlemisucaccv 6471 tfrlemiubacc 6476 tfrexlem 6480 tfri2d 6482 tfr1onlemsucaccv 6487 tfr1onlemubacc 6492 tfrcllemsucaccv 6500 tfri2 6512 rdgivallem 6527 ixpprc 6866 ixpssmap2g 6874 ixpssmapg 6875 bren 6895 fndmeng 6963 caseinl 7258 caseinr 7259 cc2lem 7452 dmaddpi 7512 dmmulpi 7513 hashinfom 11000 shftfn 11335 phimullem 12747 ennnfonelemhom 12986 qnnen 13002 fnpr2ob 13373 cldrcl 14776 neiss2 14816 txdis1cn 14952 uhgrm 15878 upgrfnen 15898 upgrex 15903 umgrfnen 15908 |
| Copyright terms: Public domain | W3C validator |