Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fndm | Unicode version |
Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fndm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5201 | . 2 | |
2 | 1 | simprbi 273 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 cdm 4611 wfun 5192 wfn 5193 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-fn 5201 |
This theorem is referenced by: funfni 5298 fndmu 5299 fnbr 5300 fnco 5306 fnresdm 5307 fnresdisj 5308 fnssresb 5310 fn0 5317 fnimadisj 5318 fnimaeq0 5319 dmmpti 5327 fdm 5353 f1dm 5408 f1odm 5446 f1o00 5477 fvelimab 5552 fvun1 5562 eqfnfv2 5594 fndmdif 5601 fneqeql2 5605 elpreima 5615 fsn2 5670 fconst3m 5715 fconst4m 5716 fnfvima 5730 funiunfvdm 5742 fnunirn 5746 dff13 5747 f1eqcocnv 5770 oprssov 5994 offval 6068 ofrfval 6069 fnexALT 6090 dmmpo 6184 dmmpoga 6187 tposfo2 6246 smodm2 6274 smoel2 6282 tfrlem5 6293 tfrlem8 6297 tfrlem9 6298 tfrlemisucaccv 6304 tfrlemiubacc 6309 tfrexlem 6313 tfri2d 6315 tfr1onlemsucaccv 6320 tfr1onlemubacc 6325 tfrcllemsucaccv 6333 tfri2 6345 rdgivallem 6360 ixpprc 6697 ixpssmap2g 6705 ixpssmapg 6706 bren 6725 fndmeng 6788 caseinl 7068 caseinr 7069 cc2lem 7228 dmaddpi 7287 dmmulpi 7288 hashinfom 10712 shftfn 10788 phimullem 12179 ennnfonelemhom 12370 qnnen 12386 cldrcl 12896 neiss2 12936 txdis1cn 13072 |
Copyright terms: Public domain | W3C validator |