| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | Unicode version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5293 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5293 |
| This theorem is referenced by: fndmi 5393 fndmd 5394 funfni 5395 fndmu 5396 fnbr 5397 fnco 5403 fnresdm 5404 fnresdisj 5405 fnssresb 5407 fn0 5415 fnimadisj 5416 fnimaeq0 5417 dmmpti 5425 fdm 5451 f1dm 5508 f1odm 5548 f1o00 5580 fvelimab 5658 fvun1 5668 eqfnfv2 5701 fndmdif 5708 fneqeql2 5712 elpreima 5722 fsn2 5777 fconst3m 5826 fconst4m 5827 fnfvima 5842 funiunfvdm 5855 fnunirn 5859 dff13 5860 f1eqcocnv 5883 oprssov 6111 offval 6189 ofrfval 6190 fnexALT 6219 dmmpo 6313 dmmpoga 6317 tposfo2 6376 smodm2 6404 smoel2 6412 tfrlem5 6423 tfrlem8 6427 tfrlem9 6428 tfrlemisucaccv 6434 tfrlemiubacc 6439 tfrexlem 6443 tfri2d 6445 tfr1onlemsucaccv 6450 tfr1onlemubacc 6455 tfrcllemsucaccv 6463 tfri2 6475 rdgivallem 6490 ixpprc 6829 ixpssmap2g 6837 ixpssmapg 6838 bren 6858 fndmeng 6926 caseinl 7219 caseinr 7220 cc2lem 7413 dmaddpi 7473 dmmulpi 7474 hashinfom 10960 shftfn 11250 phimullem 12662 ennnfonelemhom 12901 qnnen 12917 fnpr2ob 13287 cldrcl 14689 neiss2 14729 txdis1cn 14865 uhgrm 15789 upgrfnen 15809 upgrex 15814 umgrfnen 15819 |
| Copyright terms: Public domain | W3C validator |