| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fndm | Unicode version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) |
| Ref | Expression |
|---|---|
| fndm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5274 |
. 2
| |
| 2 | 1 | simprbi 275 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-fn 5274 |
| This theorem is referenced by: fndmi 5374 fndmd 5375 funfni 5376 fndmu 5377 fnbr 5378 fnco 5384 fnresdm 5385 fnresdisj 5386 fnssresb 5388 fn0 5395 fnimadisj 5396 fnimaeq0 5397 dmmpti 5405 fdm 5431 f1dm 5486 f1odm 5526 f1o00 5557 fvelimab 5635 fvun1 5645 eqfnfv2 5678 fndmdif 5685 fneqeql2 5689 elpreima 5699 fsn2 5754 fconst3m 5803 fconst4m 5804 fnfvima 5819 funiunfvdm 5832 fnunirn 5836 dff13 5837 f1eqcocnv 5860 oprssov 6088 offval 6166 ofrfval 6167 fnexALT 6196 dmmpo 6290 dmmpoga 6294 tposfo2 6353 smodm2 6381 smoel2 6389 tfrlem5 6400 tfrlem8 6404 tfrlem9 6405 tfrlemisucaccv 6411 tfrlemiubacc 6416 tfrexlem 6420 tfri2d 6422 tfr1onlemsucaccv 6427 tfr1onlemubacc 6432 tfrcllemsucaccv 6440 tfri2 6452 rdgivallem 6467 ixpprc 6806 ixpssmap2g 6814 ixpssmapg 6815 bren 6835 fndmeng 6902 caseinl 7193 caseinr 7194 cc2lem 7378 dmaddpi 7438 dmmulpi 7439 hashinfom 10923 shftfn 11135 phimullem 12547 ennnfonelemhom 12786 qnnen 12802 fnpr2ob 13172 cldrcl 14574 neiss2 14614 txdis1cn 14750 |
| Copyright terms: Public domain | W3C validator |