| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fndm | Unicode version | ||
| Description: The domain of a function. (Contributed by NM, 2-Aug-1994.) | 
| Ref | Expression | 
|---|---|
| fndm | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-fn 5261 | 
. 2
 | |
| 2 | 1 | simprbi 275 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-fn 5261 | 
| This theorem is referenced by: funfni 5358 fndmu 5359 fnbr 5360 fnco 5366 fnresdm 5367 fnresdisj 5368 fnssresb 5370 fn0 5377 fnimadisj 5378 fnimaeq0 5379 dmmpti 5387 fdm 5413 f1dm 5468 f1odm 5508 f1o00 5539 fvelimab 5617 fvun1 5627 eqfnfv2 5660 fndmdif 5667 fneqeql2 5671 elpreima 5681 fsn2 5736 fconst3m 5781 fconst4m 5782 fnfvima 5797 funiunfvdm 5810 fnunirn 5814 dff13 5815 f1eqcocnv 5838 oprssov 6065 offval 6143 ofrfval 6144 fnexALT 6168 dmmpo 6262 dmmpoga 6266 tposfo2 6325 smodm2 6353 smoel2 6361 tfrlem5 6372 tfrlem8 6376 tfrlem9 6377 tfrlemisucaccv 6383 tfrlemiubacc 6388 tfrexlem 6392 tfri2d 6394 tfr1onlemsucaccv 6399 tfr1onlemubacc 6404 tfrcllemsucaccv 6412 tfri2 6424 rdgivallem 6439 ixpprc 6778 ixpssmap2g 6786 ixpssmapg 6787 bren 6806 fndmeng 6869 caseinl 7157 caseinr 7158 cc2lem 7333 dmaddpi 7392 dmmulpi 7393 hashinfom 10870 shftfn 10989 phimullem 12393 ennnfonelemhom 12632 qnnen 12648 fnpr2ob 12983 cldrcl 14338 neiss2 14378 txdis1cn 14514 | 
| Copyright terms: Public domain | W3C validator |