ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  edgstruct Unicode version

Theorem edgstruct 15656
Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
Hypothesis
Ref Expression
edgstruct.s  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }
Assertion
Ref Expression
edgstruct  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  E )

Proof of Theorem edgstruct
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-edg 15653 . . 3  |- Edg  =  ( g  e.  _V  |->  ran  (iEdg `  g )
)
2 fveq2 5576 . . . 4  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
32rneqd 4907 . . 3  |-  ( g  =  G  ->  ran  (iEdg `  g )  =  ran  (iEdg `  G
) )
4 edgstruct.s . . . 4  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }
5 basendxnn 12888 . . . . . 6  |-  ( Base `  ndx )  e.  NN
6 simpl 109 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  V  e.  W )
7 opexg 4272 . . . . . 6  |-  ( ( ( Base `  ndx )  e.  NN  /\  V  e.  W )  ->  <. ( Base `  ndx ) ,  V >.  e.  _V )
85, 6, 7sylancr 414 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  -> 
<. ( Base `  ndx ) ,  V >.  e. 
_V )
9 edgfndxnn 15607 . . . . . 6  |-  (.ef `  ndx )  e.  NN
10 simpr 110 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  E  e.  X )
11 opexg 4272 . . . . . 6  |-  ( ( (.ef `  ndx )  e.  NN  /\  E  e.  X )  ->  <. (.ef ` 
ndx ) ,  E >.  e.  _V )
129, 10, 11sylancr 414 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  -> 
<. (.ef `  ndx ) ,  E >.  e.  _V )
13 prexg 4255 . . . . 5  |-  ( (
<. ( Base `  ndx ) ,  V >.  e. 
_V  /\  <. (.ef `  ndx ) ,  E >.  e. 
_V )  ->  { <. (
Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  e.  _V )
148, 12, 13syl2anc 411 . . . 4  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  e.  _V )
154, 14eqeltrid 2292 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  G  e.  _V )
165elexi 2784 . . . . . 6  |-  ( Base `  ndx )  e.  _V
179elexi 2784 . . . . . 6  |-  (.ef `  ndx )  e.  _V
185a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( Base `  ndx )  e.  NN )
199a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (.ef `  ndx )  e.  NN )
20 basendxnedgfndx 15610 . . . . . . . . . 10  |-  ( Base `  ndx )  =/=  (.ef ` 
ndx )
2120a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( Base `  ndx )  =/=  (.ef `  ndx ) )
22 fnprg 5329 . . . . . . . . 9  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  (.ef ` 
ndx )  e.  NN )  /\  ( V  e.  W  /\  E  e.  X )  /\  ( Base `  ndx )  =/=  (.ef `  ndx ) )  ->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
2318, 19, 6, 10, 21, 22syl221anc 1261 . . . . . . . 8  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  Fn  {
( Base `  ndx ) ,  (.ef `  ndx ) } )
244fneq1i 5368 . . . . . . . 8  |-  ( G  Fn  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  <->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
2523, 24sylibr 134 . . . . . . 7  |-  ( ( V  e.  W  /\  E  e.  X )  ->  G  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
26 fnfun 5371 . . . . . . 7  |-  ( G  Fn  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  ->  Fun 
G )
27 fundif 5318 . . . . . . 7  |-  ( Fun 
G  ->  Fun  ( G 
\  { (/) } ) )
2825, 26, 273syl 17 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  Fun  ( G  \  { (/) } ) )
2925fndmd 5375 . . . . . . 7  |-  ( ( V  e.  W  /\  E  e.  X )  ->  dom  G  =  {
( Base `  ndx ) ,  (.ef `  ndx ) } )
30 eqimss2 3248 . . . . . . 7  |-  ( dom 
G  =  { (
Base `  ndx ) ,  (.ef `  ndx ) }  ->  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  C_  dom  G )
3129, 30syl 14 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { ( Base `  ndx ) ,  (.ef `  ndx ) }  C_  dom  G
)
3216, 17, 15, 28, 21, 31funiedgdm2vald 15629 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  =  (.ef `  G )
)
33 edgfid 15605 . . . . . . . 8  |- .ef  = Slot  (.ef ` 
ndx )
3433, 9ndxslid 12857 . . . . . . 7  |-  (.ef  = Slot  (.ef `  ndx )  /\  (.ef `  ndx )  e.  NN )
3534slotex 12859 . . . . . 6  |-  ( G  e.  _V  ->  (.ef `  G )  e.  _V )
3615, 35syl 14 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (.ef `  G )  e.  _V )
3732, 36eqeltrd 2282 . . . 4  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  e.  _V )
38 rnexg 4943 . . . 4  |-  ( (iEdg `  G )  e.  _V  ->  ran  (iEdg `  G
)  e.  _V )
3937, 38syl 14 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ran  (iEdg `  G
)  e.  _V )
401, 3, 15, 39fvmptd3 5673 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  (iEdg `  G
) )
414struct2griedg 15643 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  =  E )
4241rneqd 4907 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ran  (iEdg `  G
)  =  ran  E
)
4340, 42eqtrd 2238 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    =/= wne 2376   _Vcvv 2772    \ cdif 3163    C_ wss 3166   (/)c0 3460   {csn 3633   {cpr 3634   <.cop 3636   dom cdm 4675   ran crn 4676   Fun wfun 5265    Fn wfn 5266   ` cfv 5271   NNcn 9036   ndxcnx 12829   Basecbs 12832  .efcedgf 15603  iEdgciedg 15612  Edgcedg 15652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-2nd 6227  df-1o 6502  df-2o 6503  df-en 6828  df-dom 6829  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-z 9373  df-dec 9505  df-uz 9649  df-fz 10131  df-struct 12834  df-ndx 12835  df-slot 12836  df-base 12838  df-edgf 15604  df-iedg 15614  df-edg 15653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator