ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  edgstruct Unicode version

Theorem edgstruct 15858
Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
Hypothesis
Ref Expression
edgstruct.s  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }
Assertion
Ref Expression
edgstruct  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  E )

Proof of Theorem edgstruct
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-edg 15853 . . 3  |- Edg  =  ( g  e.  _V  |->  ran  (iEdg `  g )
)
2 fveq2 5626 . . . 4  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
32rneqd 4952 . . 3  |-  ( g  =  G  ->  ran  (iEdg `  g )  =  ran  (iEdg `  G
) )
4 edgstruct.s . . . 4  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }
5 basendxnn 13083 . . . . . 6  |-  ( Base `  ndx )  e.  NN
6 simpl 109 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  V  e.  W )
7 opexg 4313 . . . . . 6  |-  ( ( ( Base `  ndx )  e.  NN  /\  V  e.  W )  ->  <. ( Base `  ndx ) ,  V >.  e.  _V )
85, 6, 7sylancr 414 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  -> 
<. ( Base `  ndx ) ,  V >.  e. 
_V )
9 edgfndxnn 15803 . . . . . 6  |-  (.ef `  ndx )  e.  NN
10 simpr 110 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  E  e.  X )
11 opexg 4313 . . . . . 6  |-  ( ( (.ef `  ndx )  e.  NN  /\  E  e.  X )  ->  <. (.ef ` 
ndx ) ,  E >.  e.  _V )
129, 10, 11sylancr 414 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  -> 
<. (.ef `  ndx ) ,  E >.  e.  _V )
13 prexg 4294 . . . . 5  |-  ( (
<. ( Base `  ndx ) ,  V >.  e. 
_V  /\  <. (.ef `  ndx ) ,  E >.  e. 
_V )  ->  { <. (
Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  e.  _V )
148, 12, 13syl2anc 411 . . . 4  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  e.  _V )
154, 14eqeltrid 2316 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  G  e.  _V )
165elexi 2812 . . . . . 6  |-  ( Base `  ndx )  e.  _V
179elexi 2812 . . . . . 6  |-  (.ef `  ndx )  e.  _V
185a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( Base `  ndx )  e.  NN )
199a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (.ef `  ndx )  e.  NN )
20 basendxnedgfndx 15806 . . . . . . . . . 10  |-  ( Base `  ndx )  =/=  (.ef ` 
ndx )
2120a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( Base `  ndx )  =/=  (.ef `  ndx ) )
22 fnprg 5375 . . . . . . . . 9  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  (.ef ` 
ndx )  e.  NN )  /\  ( V  e.  W  /\  E  e.  X )  /\  ( Base `  ndx )  =/=  (.ef `  ndx ) )  ->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
2318, 19, 6, 10, 21, 22syl221anc 1282 . . . . . . . 8  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  Fn  {
( Base `  ndx ) ,  (.ef `  ndx ) } )
244fneq1i 5414 . . . . . . . 8  |-  ( G  Fn  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  <->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
2523, 24sylibr 134 . . . . . . 7  |-  ( ( V  e.  W  /\  E  e.  X )  ->  G  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
26 fnfun 5417 . . . . . . 7  |-  ( G  Fn  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  ->  Fun 
G )
27 fundif 5364 . . . . . . 7  |-  ( Fun 
G  ->  Fun  ( G 
\  { (/) } ) )
2825, 26, 273syl 17 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  Fun  ( G  \  { (/) } ) )
2925fndmd 5421 . . . . . . 7  |-  ( ( V  e.  W  /\  E  e.  X )  ->  dom  G  =  {
( Base `  ndx ) ,  (.ef `  ndx ) } )
30 eqimss2 3279 . . . . . . 7  |-  ( dom 
G  =  { (
Base `  ndx ) ,  (.ef `  ndx ) }  ->  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  C_  dom  G )
3129, 30syl 14 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { ( Base `  ndx ) ,  (.ef `  ndx ) }  C_  dom  G
)
3216, 17, 15, 28, 21, 31funiedgdm2vald 15827 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  =  (.ef `  G )
)
33 edgfid 15801 . . . . . . . 8  |- .ef  = Slot  (.ef ` 
ndx )
3433, 9ndxslid 13052 . . . . . . 7  |-  (.ef  = Slot  (.ef `  ndx )  /\  (.ef `  ndx )  e.  NN )
3534slotex 13054 . . . . . 6  |-  ( G  e.  _V  ->  (.ef `  G )  e.  _V )
3615, 35syl 14 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (.ef `  G )  e.  _V )
3732, 36eqeltrd 2306 . . . 4  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  e.  _V )
38 rnexg 4988 . . . 4  |-  ( (iEdg `  G )  e.  _V  ->  ran  (iEdg `  G
)  e.  _V )
3937, 38syl 14 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ran  (iEdg `  G
)  e.  _V )
401, 3, 15, 39fvmptd3 5727 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  (iEdg `  G
) )
414struct2griedg 15841 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  =  E )
4241rneqd 4952 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ran  (iEdg `  G
)  =  ran  E
)
4340, 42eqtrd 2262 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   _Vcvv 2799    \ cdif 3194    C_ wss 3197   (/)c0 3491   {csn 3666   {cpr 3667   <.cop 3669   dom cdm 4718   ran crn 4719   Fun wfun 5311    Fn wfn 5312   ` cfv 5317   NNcn 9106   ndxcnx 13024   Basecbs 13027  .efcedgf 15799  iEdgciedg 15808  Edgcedg 15852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-2nd 6285  df-1o 6560  df-2o 6561  df-en 6886  df-dom 6887  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-fz 10201  df-struct 13029  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-iedg 15810  df-edg 15853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator