ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  edgstruct Unicode version

Theorem edgstruct 15745
Description: The edges of a graph represented as an extensible structure with vertices as base set and indexed edges. (Contributed by AV, 13-Oct-2020.)
Hypothesis
Ref Expression
edgstruct.s  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }
Assertion
Ref Expression
edgstruct  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  E )

Proof of Theorem edgstruct
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-edg 15740 . . 3  |- Edg  =  ( g  e.  _V  |->  ran  (iEdg `  g )
)
2 fveq2 5594 . . . 4  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
32rneqd 4921 . . 3  |-  ( g  =  G  ->  ran  (iEdg `  g )  =  ran  (iEdg `  G
) )
4 edgstruct.s . . . 4  |-  G  =  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }
5 basendxnn 12973 . . . . . 6  |-  ( Base `  ndx )  e.  NN
6 simpl 109 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  V  e.  W )
7 opexg 4285 . . . . . 6  |-  ( ( ( Base `  ndx )  e.  NN  /\  V  e.  W )  ->  <. ( Base `  ndx ) ,  V >.  e.  _V )
85, 6, 7sylancr 414 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  -> 
<. ( Base `  ndx ) ,  V >.  e. 
_V )
9 edgfndxnn 15692 . . . . . 6  |-  (.ef `  ndx )  e.  NN
10 simpr 110 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  E  e.  X )
11 opexg 4285 . . . . . 6  |-  ( ( (.ef `  ndx )  e.  NN  /\  E  e.  X )  ->  <. (.ef ` 
ndx ) ,  E >.  e.  _V )
129, 10, 11sylancr 414 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  -> 
<. (.ef `  ndx ) ,  E >.  e.  _V )
13 prexg 4266 . . . . 5  |-  ( (
<. ( Base `  ndx ) ,  V >.  e. 
_V  /\  <. (.ef `  ndx ) ,  E >.  e. 
_V )  ->  { <. (
Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  e.  _V )
148, 12, 13syl2anc 411 . . . 4  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  e.  _V )
154, 14eqeltrid 2293 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  G  e.  _V )
165elexi 2786 . . . . . 6  |-  ( Base `  ndx )  e.  _V
179elexi 2786 . . . . . 6  |-  (.ef `  ndx )  e.  _V
185a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( Base `  ndx )  e.  NN )
199a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (.ef `  ndx )  e.  NN )
20 basendxnedgfndx 15695 . . . . . . . . . 10  |-  ( Base `  ndx )  =/=  (.ef ` 
ndx )
2120a1i 9 . . . . . . . . 9  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ( Base `  ndx )  =/=  (.ef `  ndx ) )
22 fnprg 5343 . . . . . . . . 9  |-  ( ( ( ( Base `  ndx )  e.  NN  /\  (.ef ` 
ndx )  e.  NN )  /\  ( V  e.  W  /\  E  e.  X )  /\  ( Base `  ndx )  =/=  (.ef `  ndx ) )  ->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
2318, 19, 6, 10, 21, 22syl221anc 1261 . . . . . . . 8  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { <. ( Base `  ndx ) ,  V >. , 
<. (.ef `  ndx ) ,  E >. }  Fn  {
( Base `  ndx ) ,  (.ef `  ndx ) } )
244fneq1i 5382 . . . . . . . 8  |-  ( G  Fn  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  <->  { <. ( Base `  ndx ) ,  V >. ,  <. (.ef ` 
ndx ) ,  E >. }  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
2523, 24sylibr 134 . . . . . . 7  |-  ( ( V  e.  W  /\  E  e.  X )  ->  G  Fn  { (
Base `  ndx ) ,  (.ef `  ndx ) } )
26 fnfun 5385 . . . . . . 7  |-  ( G  Fn  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  ->  Fun 
G )
27 fundif 5332 . . . . . . 7  |-  ( Fun 
G  ->  Fun  ( G 
\  { (/) } ) )
2825, 26, 273syl 17 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  Fun  ( G  \  { (/) } ) )
2925fndmd 5389 . . . . . . 7  |-  ( ( V  e.  W  /\  E  e.  X )  ->  dom  G  =  {
( Base `  ndx ) ,  (.ef `  ndx ) } )
30 eqimss2 3252 . . . . . . 7  |-  ( dom 
G  =  { (
Base `  ndx ) ,  (.ef `  ndx ) }  ->  { ( Base `  ndx ) ,  (.ef
`  ndx ) }  C_  dom  G )
3129, 30syl 14 . . . . . 6  |-  ( ( V  e.  W  /\  E  e.  X )  ->  { ( Base `  ndx ) ,  (.ef `  ndx ) }  C_  dom  G
)
3216, 17, 15, 28, 21, 31funiedgdm2vald 15716 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  =  (.ef `  G )
)
33 edgfid 15690 . . . . . . . 8  |- .ef  = Slot  (.ef ` 
ndx )
3433, 9ndxslid 12942 . . . . . . 7  |-  (.ef  = Slot  (.ef `  ndx )  /\  (.ef `  ndx )  e.  NN )
3534slotex 12944 . . . . . 6  |-  ( G  e.  _V  ->  (.ef `  G )  e.  _V )
3615, 35syl 14 . . . . 5  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (.ef `  G )  e.  _V )
3732, 36eqeltrd 2283 . . . 4  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  e.  _V )
38 rnexg 4957 . . . 4  |-  ( (iEdg `  G )  e.  _V  ->  ran  (iEdg `  G
)  e.  _V )
3937, 38syl 14 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ran  (iEdg `  G
)  e.  _V )
401, 3, 15, 39fvmptd3 5691 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  (iEdg `  G
) )
414struct2griedg 15730 . . 3  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (iEdg `  G )  =  E )
4241rneqd 4921 . 2  |-  ( ( V  e.  W  /\  E  e.  X )  ->  ran  (iEdg `  G
)  =  ran  E
)
4340, 42eqtrd 2239 1  |-  ( ( V  e.  W  /\  E  e.  X )  ->  (Edg `  G )  =  ran  E )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    =/= wne 2377   _Vcvv 2773    \ cdif 3167    C_ wss 3170   (/)c0 3464   {csn 3638   {cpr 3639   <.cop 3641   dom cdm 4688   ran crn 4689   Fun wfun 5279    Fn wfn 5280   ` cfv 5285   NNcn 9066   ndxcnx 12914   Basecbs 12917  .efcedgf 15688  iEdgciedg 15697  Edgcedg 15739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-2nd 6245  df-1o 6520  df-2o 6521  df-en 6846  df-dom 6847  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-z 9403  df-dec 9535  df-uz 9679  df-fz 10161  df-struct 12919  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-iedg 15699  df-edg 15740
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator