ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbexd Unicode version

Theorem hbexd 1682
Description: Deduction form of bound-variable hypothesis builder hbex 1624. (Contributed by NM, 2-Jan-2002.)
Hypotheses
Ref Expression
hbexd.1  |-  ( ph  ->  A. y ph )
hbexd.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbexd  |-  ( ph  ->  ( E. y ps 
->  A. x E. y ps ) )

Proof of Theorem hbexd
StepHypRef Expression
1 hbexd.1 . . 3  |-  ( ph  ->  A. y ph )
2 hbexd.2 . . 3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
31, 2eximdh 1599 . 2  |-  ( ph  ->  ( E. y ps 
->  E. y A. x ps ) )
4 19.12 1653 . 2  |-  ( E. y A. x ps 
->  A. x E. y ps )
53, 4syl6 33 1  |-  ( ph  ->  ( E. y ps 
->  A. x E. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-ial 1522
This theorem depends on definitions:  df-bi 116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator