ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eximdh Unicode version

Theorem eximdh 1545
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
Hypotheses
Ref Expression
eximdh.1  |-  ( ph  ->  A. x ph )
eximdh.2  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
eximdh  |-  ( ph  ->  ( E. x ps 
->  E. x ch )
)

Proof of Theorem eximdh
StepHypRef Expression
1 eximdh.1 . . 3  |-  ( ph  ->  A. x ph )
2 eximdh.2 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2alrimih 1401 . 2  |-  ( ph  ->  A. x ( ps 
->  ch ) )
4 exim 1533 . 2  |-  ( A. x ( ps  ->  ch )  ->  ( E. x ps  ->  E. x ch ) )
53, 4syl 14 1  |-  ( ph  ->  ( E. x ps 
->  E. x ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1285   E.wex 1424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-4 1443  ax-ial 1470
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  eximd  1546  19.41h  1618  hbexd  1627  equsex  1660  equsexd  1661  spimeh  1671  sbiedh  1714  exdistrfor  1725  eximdv  1805  cbvexdh  1846  mopick2  2028  2euex  2032  bj-sbimedh  11110
  Copyright terms: Public domain W3C validator