ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eximdh Unicode version

Theorem eximdh 1622
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 20-May-1996.)
Hypotheses
Ref Expression
eximdh.1  |-  ( ph  ->  A. x ph )
eximdh.2  |-  ( ph  ->  ( ps  ->  ch ) )
Assertion
Ref Expression
eximdh  |-  ( ph  ->  ( E. x ps 
->  E. x ch )
)

Proof of Theorem eximdh
StepHypRef Expression
1 eximdh.1 . . 3  |-  ( ph  ->  A. x ph )
2 eximdh.2 . . 3  |-  ( ph  ->  ( ps  ->  ch ) )
31, 2alrimih 1480 . 2  |-  ( ph  ->  A. x ( ps 
->  ch ) )
4 exim 1610 . 2  |-  ( A. x ( ps  ->  ch )  ->  ( E. x ps  ->  E. x ch ) )
53, 4syl 14 1  |-  ( ph  ->  ( E. x ps 
->  E. x ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   E.wex 1503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  eximd  1623  19.41h  1696  hbexd  1705  equsex  1739  equsexd  1740  spimeh  1750  sbiedh  1798  exdistrfor  1811  eximdv  1891  cbvexdh  1938  mopick2  2125  2euex  2129  bj-sbimedh  15263
  Copyright terms: Public domain W3C validator