ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbex Unicode version

Theorem hbex 1682
Description: If  x is not free in  ph, it is not free in  E. y ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
hbex.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbex  |-  ( E. y ph  ->  A. x E. y ph )

Proof of Theorem hbex
StepHypRef Expression
1 hbe1 1541 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbal 1523 . 2  |-  ( A. x E. y ph  ->  A. y A. x E. y ph )
3 hbex.1 . . 3  |-  ( ph  ->  A. x ph )
4 19.8a 1636 . . 3  |-  ( ph  ->  E. y ph )
53, 4alrimih 1515 . 2  |-  ( ph  ->  A. x E. y ph )
62, 5exlimih 1639 1  |-  ( E. y ph  ->  A. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1393   E.wex 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfex  1683  excomim  1709  19.12  1711  cbvexh  1801  cbvexdh  1973  hbsbv  1992  hbeu1  2087  hbmo  2116  moexexdc  2162
  Copyright terms: Public domain W3C validator