ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbex Unicode version

Theorem hbex 1629
Description: If  x is not free in  ph, it is not free in  E. y ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
hbex.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbex  |-  ( E. y ph  ->  A. x E. y ph )

Proof of Theorem hbex
StepHypRef Expression
1 hbe1 1488 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbal 1470 . 2  |-  ( A. x E. y ph  ->  A. y A. x E. y ph )
3 hbex.1 . . 3  |-  ( ph  ->  A. x ph )
4 19.8a 1583 . . 3  |-  ( ph  ->  E. y ph )
53, 4alrimih 1462 . 2  |-  ( ph  ->  A. x E. y ph )
62, 5exlimih 1586 1  |-  ( E. y ph  ->  A. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346   E.wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfex  1630  excomim  1656  19.12  1658  cbvexh  1748  cbvexdh  1919  hbsbv  1934  hbeu1  2029  hbmo  2058  moexexdc  2103
  Copyright terms: Public domain W3C validator