ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbex Unicode version

Theorem hbex 1650
Description: If  x is not free in  ph, it is not free in  E. y ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
hbex.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbex  |-  ( E. y ph  ->  A. x E. y ph )

Proof of Theorem hbex
StepHypRef Expression
1 hbe1 1509 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbal 1491 . 2  |-  ( A. x E. y ph  ->  A. y A. x E. y ph )
3 hbex.1 . . 3  |-  ( ph  ->  A. x ph )
4 19.8a 1604 . . 3  |-  ( ph  ->  E. y ph )
53, 4alrimih 1483 . 2  |-  ( ph  ->  A. x E. y ph )
62, 5exlimih 1607 1  |-  ( E. y ph  ->  A. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfex  1651  excomim  1677  19.12  1679  cbvexh  1769  cbvexdh  1941  hbsbv  1960  hbeu1  2055  hbmo  2084  moexexdc  2129
  Copyright terms: Public domain W3C validator