ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbex Unicode version

Theorem hbex 1659
Description: If  x is not free in  ph, it is not free in  E. y ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
hbex.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbex  |-  ( E. y ph  ->  A. x E. y ph )

Proof of Theorem hbex
StepHypRef Expression
1 hbe1 1518 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbal 1500 . 2  |-  ( A. x E. y ph  ->  A. y A. x E. y ph )
3 hbex.1 . . 3  |-  ( ph  ->  A. x ph )
4 19.8a 1613 . . 3  |-  ( ph  ->  E. y ph )
53, 4alrimih 1492 . 2  |-  ( ph  ->  A. x E. y ph )
62, 5exlimih 1616 1  |-  ( E. y ph  ->  A. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1371   E.wex 1515
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-4 1533
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  nfex  1660  excomim  1686  19.12  1688  cbvexh  1778  cbvexdh  1950  hbsbv  1969  hbeu1  2064  hbmo  2093  moexexdc  2138
  Copyright terms: Public domain W3C validator