ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbex Unicode version

Theorem hbex 1624
Description: If  x is not free in  ph, it is not free in  E. y ph. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Hypothesis
Ref Expression
hbex.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbex  |-  ( E. y ph  ->  A. x E. y ph )

Proof of Theorem hbex
StepHypRef Expression
1 hbe1 1483 . . 3  |-  ( E. y ph  ->  A. y E. y ph )
21hbal 1465 . 2  |-  ( A. x E. y ph  ->  A. y A. x E. y ph )
3 hbex.1 . . 3  |-  ( ph  ->  A. x ph )
4 19.8a 1578 . . 3  |-  ( ph  ->  E. y ph )
53, 4alrimih 1457 . 2  |-  ( ph  ->  A. x E. y ph )
62, 5exlimih 1581 1  |-  ( E. y ph  ->  A. x E. y ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nfex  1625  excomim  1651  19.12  1653  cbvexh  1743  cbvexdh  1914  hbsbv  1929  hbeu1  2024  hbmo  2053  moexexdc  2098
  Copyright terms: Public domain W3C validator