ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eeor Unicode version

Theorem eeor 1709
Description: Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.)
Hypotheses
Ref Expression
eeor.1  |-  F/ y
ph
eeor.2  |-  F/ x ps
Assertion
Ref Expression
eeor  |-  ( E. x E. y (
ph  \/  ps )  <->  ( E. x ph  \/  E. y ps ) )

Proof of Theorem eeor
StepHypRef Expression
1 eeor.1 . . . 4  |-  F/ y
ph
2119.45 1697 . . 3  |-  ( E. y ( ph  \/  ps )  <->  ( ph  \/  E. y ps ) )
32exbii 1619 . 2  |-  ( E. x E. y (
ph  \/  ps )  <->  E. x ( ph  \/  E. y ps ) )
4 eeor.2 . . . 4  |-  F/ x ps
54nfex 1651 . . 3  |-  F/ x E. y ps
6519.44 1696 . 2  |-  ( E. x ( ph  \/  E. y ps )  <->  ( E. x ph  \/  E. y ps ) )
73, 6bitri 184 1  |-  ( E. x E. y (
ph  \/  ps )  <->  ( E. x ph  \/  E. y ps ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709   F/wnf 1474   E.wex 1506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator