Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbexd | GIF version |
Description: Deduction form of bound-variable hypothesis builder hbex 1624. (Contributed by NM, 2-Jan-2002.) |
Ref | Expression |
---|---|
hbexd.1 | ⊢ (𝜑 → ∀𝑦𝜑) |
hbexd.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
hbexd | ⊢ (𝜑 → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbexd.1 | . . 3 ⊢ (𝜑 → ∀𝑦𝜑) | |
2 | hbexd.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | eximdh 1599 | . 2 ⊢ (𝜑 → (∃𝑦𝜓 → ∃𝑦∀𝑥𝜓)) |
4 | 19.12 1653 | . 2 ⊢ (∃𝑦∀𝑥𝜓 → ∀𝑥∃𝑦𝜓) | |
5 | 3, 4 | syl6 33 | 1 ⊢ (𝜑 → (∃𝑦𝜓 → ∀𝑥∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |