ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbnt Unicode version

Theorem hbnt 1664
Description: Closed theorem version of bound-variable hypothesis builder hbn 1665. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 2-Feb-2015.)
Assertion
Ref Expression
hbnt  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  ph  ->  A. x  -.  ph )
)

Proof of Theorem hbnt
StepHypRef Expression
1 ax-4 1521 . . . 4  |-  ( A. x ph  ->  ph )
21con3i 633 . . 3  |-  ( -. 
ph  ->  -.  A. x ph )
3 ax6b 1662 . . 3  |-  ( -. 
A. x ph  ->  A. x  -.  A. x ph )
42, 3syl 14 . 2  |-  ( -. 
ph  ->  A. x  -.  A. x ph )
5 con3 643 . . 3  |-  ( (
ph  ->  A. x ph )  ->  ( -.  A. x ph  ->  -.  ph ) )
65al2imi 1469 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( A. x  -.  A. x ph  ->  A. x  -.  ph ) )
74, 6syl5 32 1  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  ph  ->  A. x  -.  ph )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1458  ax-gen 1460  ax-ie2 1505  ax-4 1521  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by:  hbn  1665  hbnd  1666  nfnt  1667
  Copyright terms: Public domain W3C validator