Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hbn | Unicode version |
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
hbn.1 |
Ref | Expression |
---|---|
hbn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbnt 1646 | . 2 | |
2 | hbn.1 | . 2 | |
3 | 1, 2 | mpg 1444 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 |
This theorem is referenced by: hbnae 1714 sbn 1945 euor 2045 euor2 2077 |
Copyright terms: Public domain | W3C validator |