ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbn Unicode version

Theorem hbn 1647
Description: If  x is not free in  ph, it is not free in  -.  ph. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbn.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbn  |-  ( -. 
ph  ->  A. x  -.  ph )

Proof of Theorem hbn
StepHypRef Expression
1 hbnt 1646 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  ph  ->  A. x  -.  ph )
)
2 hbn.1 . 2  |-  ( ph  ->  A. x ph )
31, 2mpg 1444 1  |-  ( -. 
ph  ->  A. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  hbnae  1714  sbn  1945  euor  2045  euor2  2077
  Copyright terms: Public domain W3C validator