ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbn Unicode version

Theorem hbn 1668
Description: If  x is not free in  ph, it is not free in  -.  ph. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbn.1  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbn  |-  ( -. 
ph  ->  A. x  -.  ph )

Proof of Theorem hbn
StepHypRef Expression
1 hbnt 1667 . 2  |-  ( A. x ( ph  ->  A. x ph )  -> 
( -.  ph  ->  A. x  -.  ph )
)
2 hbn.1 . 2  |-  ( ph  ->  A. x ph )
31, 2mpg 1465 1  |-  ( -. 
ph  ->  A. x  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1461  ax-gen 1463  ax-ie2 1508  ax-4 1524  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370
This theorem is referenced by:  hbnae  1735  sbn  1971  euor  2071  euor2  2103
  Copyright terms: Public domain W3C validator