Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfnt | Unicode version |
Description: If is not free in , then it is not free in . (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) |
Ref | Expression |
---|---|
nfnt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 1537 | . 2 | |
2 | df-nf 1454 | . . 3 | |
3 | hbnt 1646 | . . 3 | |
4 | 2, 3 | sylbi 120 | . 2 |
5 | 1, 4 | nfd 1516 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1346 wnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-5 1440 ax-gen 1442 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 |
This theorem is referenced by: nfnd 1650 nfn 1651 |
Copyright terms: Public domain | W3C validator |