ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbra1 Unicode version

Theorem hbra1 2500
Description:  x is not free in  A. x  e.  A ph. (Contributed by NM, 18-Oct-1996.)
Assertion
Ref Expression
hbra1  |-  ( A. x  e.  A  ph  ->  A. x A. x  e.  A  ph )

Proof of Theorem hbra1
StepHypRef Expression
1 df-ral 2453 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
2 hba1 1533 . 2  |-  ( A. x ( x  e.  A  ->  ph )  ->  A. x A. x ( x  e.  A  ->  ph ) )
31, 2hbxfrbi 1465 1  |-  ( A. x  e.  A  ph  ->  A. x A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1346    e. wcel 2141   A.wral 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-ral 2453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator