ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbra1 Unicode version

Theorem hbra1 2487
Description:  x is not free in  A. x  e.  A ph. (Contributed by NM, 18-Oct-1996.)
Assertion
Ref Expression
hbra1  |-  ( A. x  e.  A  ph  ->  A. x A. x  e.  A  ph )

Proof of Theorem hbra1
StepHypRef Expression
1 df-ral 2440 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
2 hba1 1520 . 2  |-  ( A. x ( x  e.  A  ->  ph )  ->  A. x A. x ( x  e.  A  ->  ph ) )
31, 2hbxfrbi 1452 1  |-  ( A. x  e.  A  ph  ->  A. x A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1333    e. wcel 2128   A.wral 2435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-gen 1429  ax-ial 1514
This theorem depends on definitions:  df-bi 116  df-ral 2440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator