HomeHome Intuitionistic Logic Explorer
Theorem List (p. 26 of 140)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 2501-2600   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnfraldya 2501* Not-free for restricted universal quantification where  y and  A are distinct. See nfraldxy 2499 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x A. y  e.  A  ps )
 
Theoremnfrexdya 2502* Not-free for restricted existential quantification where  y and  A are distinct. See nfrexdxy 2500 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |- 
 F/ y ph   &    |-  ( ph  ->  F/_ x A )   &    |-  ( ph  ->  F/ x ps )   =>    |-  ( ph  ->  F/ x E. y  e.  A  ps )
 
Theoremnfralw 2503* Bound-variable hypothesis builder for restricted quantification. See nfralya 2506 for a version with  y and 
A distinct instead of  x and  y. (Contributed by NM, 1-Sep-1999.) (Revised by Gino Giotto, 10-Jan-2024.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
Theoremnfralxy 2504* Old name for nfralw 2503. (Contributed by Jim Kingdon, 30-May-2018.) (New usage is discouraged.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
Theoremnfrexxy 2505* Not-free for restricted existential quantification where  x and  y are distinct. See nfrexya 2507 for a version with  y and 
A distinct instead. (Contributed by Jim Kingdon, 30-May-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x E. y  e.  A  ph
 
Theoremnfralya 2506* Not-free for restricted universal quantification where  y and  A are distinct. See nfralxy 2504 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x A. y  e.  A  ph
 
Theoremnfrexya 2507* Not-free for restricted existential quantification where  y and  A are distinct. See nfrexxy 2505 for a version with  x and  y distinct instead. (Contributed by Jim Kingdon, 3-Jun-2018.)
 |-  F/_ x A   &    |-  F/ x ph   =>    |-  F/ x E. y  e.  A  ph
 
Theoremnfra2xy 2508* Not-free given two restricted quantifiers. (Contributed by Jim Kingdon, 20-Aug-2018.)
 |- 
 F/ y A. x  e.  A  A. y  e.  B  ph
 
Theoremnfre1 2509  x is not free in  E. x  e.  A ph. (Contributed by NM, 19-Mar-1997.) (Revised by Mario Carneiro, 7-Oct-2016.)
 |- 
 F/ x E. x  e.  A  ph
 
Theoremr3al 2510* Triple restricted universal quantification. (Contributed by NM, 19-Nov-1995.)
 |-  ( A. x  e.  A  A. y  e.  B  A. z  e.  C  ph  <->  A. x A. y A. z ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
 )
 
Theoremalral 2511 Universal quantification implies restricted quantification. (Contributed by NM, 20-Oct-2006.)
 |-  ( A. x ph  ->  A. x  e.  A  ph )
 
Theoremrexex 2512 Restricted existence implies existence. (Contributed by NM, 11-Nov-1995.)
 |-  ( E. x  e.  A  ph  ->  E. x ph )
 
Theoremrsp 2513 Restricted specialization. (Contributed by NM, 17-Oct-1996.)
 |-  ( A. x  e.  A  ph  ->  ( x  e.  A  ->  ph )
 )
 
Theoremrspa 2514 Restricted specialization. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
 |-  ( ( A. x  e.  A  ph  /\  x  e.  A )  ->  ph )
 
Theoremrspe 2515 Restricted specialization. (Contributed by NM, 12-Oct-1999.)
 |-  ( ( x  e.  A  /\  ph )  ->  E. x  e.  A  ph )
 
Theoremrsp2 2516 Restricted specialization. (Contributed by NM, 11-Feb-1997.)
 |-  ( A. x  e.  A  A. y  e.  B  ph  ->  ( ( x  e.  A  /\  y  e.  B )  -> 
 ph ) )
 
Theoremrsp2e 2517 Restricted specialization. (Contributed by FL, 4-Jun-2012.)
 |-  ( ( x  e.  A  /\  y  e.  B  /\  ph )  ->  E. x  e.  A  E. y  e.  B  ph )
 
Theoremrspec 2518 Specialization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
 |- 
 A. x  e.  A  ph   =>    |-  ( x  e.  A  -> 
 ph )
 
Theoremrgen 2519 Generalization rule for restricted quantification. (Contributed by NM, 19-Nov-1994.)
 |-  ( x  e.  A  -> 
 ph )   =>    |- 
 A. x  e.  A  ph
 
Theoremrgen2a 2520* Generalization rule for restricted quantification. Note that  x and  y are not required to be disjoint. This proof illustrates the use of dvelim 2005. Usage of rgen2 2552 instead is highly encouraged. (Contributed by NM, 23-Nov-1994.) (Proof rewritten by Jim Kingdon, 1-Jun-2018.) (New usage is discouraged.)
 |-  ( ( x  e.  A  /\  y  e.  A )  ->  ph )   =>    |-  A. x  e.  A  A. y  e.  A  ph
 
Theoremrgenw 2521 Generalization rule for restricted quantification. (Contributed by NM, 18-Jun-2014.)
 |-  ph   =>    |- 
 A. x  e.  A  ph
 
Theoremrgen2w 2522 Generalization rule for restricted quantification. Note that  x and  y needn't be distinct. (Contributed by NM, 18-Jun-2014.)
 |-  ph   =>    |- 
 A. x  e.  A  A. y  e.  B  ph
 
Theoremmprg 2523 Modus ponens combined with restricted generalization. (Contributed by NM, 10-Aug-2004.)
 |-  ( A. x  e.  A  ph  ->  ps )   &    |-  ( x  e.  A  ->  ph )   =>    |- 
 ps
 
Theoremmprgbir 2524 Modus ponens on biconditional combined with restricted generalization. (Contributed by NM, 21-Mar-2004.)
 |-  ( ph  <->  A. x  e.  A  ps )   &    |-  ( x  e.  A  ->  ps )   =>    |-  ph
 
Theoremralim 2525 Distribution of restricted quantification over implication. (Contributed by NM, 9-Feb-1997.)
 |-  ( A. x  e.  A  ( ph  ->  ps )  ->  ( A. x  e.  A  ph  ->  A. x  e.  A  ps ) )
 
Theoremralimi2 2526 Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
 |-  ( ( x  e.  A  ->  ph )  ->  ( x  e.  B  ->  ps ) )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  B  ps )
 
Theoremralimia 2527 Inference quantifying both antecedent and consequent. (Contributed by NM, 19-Jul-1996.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
 
Theoremralimiaa 2528 Inference quantifying both antecedent and consequent. (Contributed by NM, 4-Aug-2007.)
 |-  ( ( x  e.  A  /\  ph )  ->  ps )   =>    |-  ( A. x  e.  A  ph  ->  A. x  e.  A  ps )
 
Theoremralimi 2529 Inference quantifying both antecedent and consequent, with strong hypothesis. (Contributed by NM, 4-Mar-1997.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x  e.  A  ph 
 ->  A. x  e.  A  ps )
 
Theorem2ralimi 2530 Inference quantifying both antecedent and consequent two times, with strong hypothesis. (Contributed by AV, 3-Dec-2021.)
 |-  ( ph  ->  ps )   =>    |-  ( A. x  e.  A  A. y  e.  B  ph  ->  A. x  e.  A  A. y  e.  B  ps )
 
Theoremral2imi 2531 Inference quantifying antecedent, nested antecedent, and consequent, with a strong hypothesis. (Contributed by NM, 19-Dec-2006.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( A. x  e.  A  ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdaa 2532 Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.)
 |- 
 F/ x ph   &    |-  ( ( ph  /\  x  e.  A ) 
 ->  ( ps  ->  ch )
 )   =>    |-  ( ph  ->  ( A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdva 2533* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdv 2534* Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 8-Oct-2003.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps  ->  A. x  e.  A  ch ) )
 
Theoremralimdvva 2535* Deduction doubly quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90 (alim 1445). (Contributed by AV, 27-Nov-2019.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  A. y  e.  B  ps  ->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theoremralimdv2 2536* Inference quantifying both antecedent and consequent. (Contributed by NM, 1-Feb-2005.)
 |-  ( ph  ->  (
 ( x  e.  A  ->  ps )  ->  ( x  e.  B  ->  ch ) ) )   =>    |-  ( ph  ->  (
 A. x  e.  A  ps  ->  A. x  e.  B  ch ) )
 
Theoremralrimi 2537 Inference from Theorem 19.21 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 10-Oct-1999.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( x  e.  A  ->  ps ) )   =>    |-  ( ph  ->  A. x  e.  A  ps )
 
Theoremralrimiv 2538* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.)
 |-  ( ph  ->  ( x  e.  A  ->  ps ) )   =>    |-  ( ph  ->  A. x  e.  A  ps )
 
Theoremralrimiva 2539* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Jan-2006.)
 |-  ( ( ph  /\  x  e.  A )  ->  ps )   =>    |-  ( ph  ->  A. x  e.  A  ps )
 
Theoremralrimivw 2540* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
 |-  ( ph  ->  ps )   =>    |-  ( ph  ->  A. x  e.  A  ps )
 
Theoremr19.21t 2541 Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers (closed theorem version). (Contributed by NM, 1-Mar-2008.)
 |-  ( F/ x ph  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) ) )
 
Theoremr19.21 2542 Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by Scott Fenton, 30-Mar-2011.)
 |- 
 F/ x ph   =>    |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )
 
Theoremr19.21v 2543* Theorem 19.21 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( ph  ->  A. x  e.  A  ps ) )
 
Theoremralrimd 2544 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.)
 |- 
 F/ x ph   &    |-  F/ x ps   &    |-  ( ph  ->  ( ps  ->  ( x  e.  A  ->  ch ) ) )   =>    |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch ) )
 
Theoremralrimdv 2545* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 27-May-1998.)
 |-  ( ph  ->  ( ps  ->  ( x  e.  A  ->  ch )
 ) )   =>    |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch ) )
 
Theoremralrimdva 2546* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 2-Feb-2008.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x  e.  A  ch ) )
 
Theoremralrimivv 2547* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  y  e.  B )  ->  ps ) )   =>    |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
 
Theoremralrimivva 2548* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by Jeff Madsen, 19-Jun-2011.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ps )   =>    |-  ( ph  ->  A. x  e.  A  A. y  e.  B  ps )
 
Theoremralrimivvva 2549* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with triple quantification.) (Contributed by Mario Carneiro, 9-Jul-2014.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B  /\  z  e.  C )
 )  ->  ps )   =>    |-  ( ph  ->  A. x  e.  A  A. y  e.  B  A. z  e.  C  ps )
 
Theoremralrimdvv 2550* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
 |-  ( ph  ->  ( ps  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ch )
 ) )   =>    |-  ( ph  ->  ( ps  ->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theoremralrimdvva 2551* Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 2-Feb-2008.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( ps  ->  A. x  e.  A  A. y  e.  B  ch ) )
 
Theoremrgen2 2552* Generalization rule for restricted quantification. (Contributed by NM, 30-May-1999.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  ph )   =>    |-  A. x  e.  A  A. y  e.  B  ph
 
Theoremrgen3 2553* Generalization rule for restricted quantification. (Contributed by NM, 12-Jan-2008.)
 |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )   =>    |-  A. x  e.  A  A. y  e.  B  A. z  e.  C  ph
 
Theoremr19.21bi 2554 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
 |-  ( ph  ->  A. x  e.  A  ps )   =>    |-  ( ( ph  /\  x  e.  A ) 
 ->  ps )
 
Theoremrspec2 2555 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
 |- 
 A. x  e.  A  A. y  e.  B  ph   =>    |-  (
 ( x  e.  A  /\  y  e.  B )  ->  ph )
 
Theoremrspec3 2556 Specialization rule for restricted quantification. (Contributed by NM, 20-Nov-1994.)
 |- 
 A. x  e.  A  A. y  e.  B  A. z  e.  C  ph   =>    |-  ( ( x  e.  A  /\  y  e.  B  /\  z  e.  C )  ->  ph )
 
Theoremr19.21be 2557 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
 |-  ( ph  ->  A. x  e.  A  ps )   =>    |-  A. x  e.  A  ( ph  ->  ps )
 
Theoremnrex 2558 Inference adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
 |-  ( x  e.  A  ->  -.  ps )   =>    |-  -.  E. x  e.  A  ps
 
Theoremnrexdv 2559* Deduction adding restricted existential quantifier to negated wff. (Contributed by NM, 16-Oct-2003.)
 |-  ( ( ph  /\  x  e.  A )  ->  -.  ps )   =>    |-  ( ph  ->  -.  E. x  e.  A  ps )
 
Theoremrexim 2560 Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Nov-1994.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |-  ( A. x  e.  A  ( ph  ->  ps )  ->  ( E. x  e.  A  ph  ->  E. x  e.  A  ps ) )
 
Theoremreximia 2561 Inference quantifying both antecedent and consequent. (Contributed by NM, 10-Feb-1997.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |-  ( E. x  e.  A  ph  ->  E. x  e.  A  ps )
 
Theoremreximi2 2562 Inference quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 8-Nov-2004.)
 |-  ( ( x  e.  A  /\  ph )  ->  ( x  e.  B  /\  ps ) )   =>    |-  ( E. x  e.  A  ph  ->  E. x  e.  B  ps )
 
Theoremreximi 2563 Inference quantifying both antecedent and consequent. (Contributed by NM, 18-Oct-1996.)
 |-  ( ph  ->  ps )   =>    |-  ( E. x  e.  A  ph 
 ->  E. x  e.  A  ps )
 
Theoremreximdai 2564 Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 31-Aug-1999.)
 |- 
 F/ x ph   &    |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch ) )
 
Theoremreximdv2 2565* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 17-Sep-2003.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  ps )  ->  ( x  e.  B  /\  ch ) ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  B  ch ) )
 
Theoremreximdvai 2566* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 14-Nov-2002.)
 |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch ) )
 
Theoremreximdv 2567* Deduction from Theorem 19.22 of [Margaris] p. 90. (Restricted quantifier version with strong hypothesis.) (Contributed by NM, 24-Jun-1998.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch ) )
 
Theoremreximdva 2568* Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by NM, 22-May-1999.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ch ) )
 
Theoremreximddv 2569* Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 7-Dec-2016.)
 |-  ( ( ph  /\  ( x  e.  A  /\  ps ) )  ->  ch )   &    |-  ( ph  ->  E. x  e.  A  ps )   =>    |-  ( ph  ->  E. x  e.  A  ch )
 
Theoremreximssdv 2570* Derivation of a restricted existential quantification over a subset (the second hypothesis implies  A  C_  B), deduction form. (Contributed by AV, 21-Aug-2022.)
 |-  ( ph  ->  E. x  e.  B  ps )   &    |-  (
 ( ph  /\  ( x  e.  B  /\  ps ) )  ->  x  e.  A )   &    |-  ( ( ph  /\  ( x  e.  B  /\  ps ) )  ->  ch )   =>    |-  ( ph  ->  E. x  e.  A  ch )
 
Theoremreximddv2 2571* Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
 |-  ( ( ( (
 ph  /\  x  e.  A )  /\  y  e.  B )  /\  ps )  ->  ch )   &    |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ps )   =>    |-  ( ph  ->  E. x  e.  A  E. y  e.  B  ch )
 
Theoremr19.12 2572* Theorem 19.12 of [Margaris] p. 89 with restricted quantifiers. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |-  ( E. x  e.  A  A. y  e.  B  ph  ->  A. y  e.  B  E. x  e.  A  ph )
 
Theoremr19.23t 2573 Closed theorem form of r19.23 2574. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
 |-  ( F/ x ps  ->  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps )
 ) )
 
Theoremr19.23 2574 Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 22-Oct-2010.) (Proof shortened by Mario Carneiro, 8-Oct-2016.)
 |- 
 F/ x ps   =>    |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps )
 )
 
Theoremr19.23v 2575* Theorem 19.23 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 31-Aug-1999.)
 |-  ( A. x  e.  A  ( ph  ->  ps )  <->  ( E. x  e.  A  ph  ->  ps )
 )
 
Theoremrexlimi 2576 Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 30-Nov-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |- 
 F/ x ps   &    |-  ( x  e.  A  ->  (
 ph  ->  ps ) )   =>    |-  ( E. x  e.  A  ph  ->  ps )
 
Theoremrexlimiv 2577* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994.)
 |-  ( x  e.  A  ->  ( ph  ->  ps )
 )   =>    |-  ( E. x  e.  A  ph  ->  ps )
 
Theoremrexlimiva 2578* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Dec-2006.)
 |-  ( ( x  e.  A  /\  ph )  ->  ps )   =>    |-  ( E. x  e.  A  ph  ->  ps )
 
Theoremrexlimivw 2579* Weaker version of rexlimiv 2577. (Contributed by FL, 19-Sep-2011.)
 |-  ( ph  ->  ps )   =>    |-  ( E. x  e.  A  ph 
 ->  ps )
 
Theoremrexlimd 2580 Deduction from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |- 
 F/ x ph   &    |-  F/ x ch   &    |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
 
Theoremrexlimd2 2581 Version of rexlimd 2580 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
 |- 
 F/ x ph   &    |-  ( ph  ->  F/ x ch )   &    |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
 
Theoremrexlimdv 2582* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.)
 |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch )
 ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
 
Theoremrexlimdva 2583* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 20-Jan-2007.)
 |-  ( ( ph  /\  x  e.  A )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
 
Theoremrexlimdvaa 2584* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.)
 |-  ( ( ph  /\  ( x  e.  A  /\  ps ) )  ->  ch )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch )
 )
 
Theoremrexlimdv3a 2585* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). Frequently-used variant of rexlimdv 2582. (Contributed by NM, 7-Jun-2015.)
 |-  ( ( ph  /\  x  e.  A  /\  ps )  ->  ch )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
 
Theoremrexlimdva2 2586* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
 |-  ( ( ( ph  /\  x  e.  A ) 
 /\  ps )  ->  ch )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch )
 )
 
Theoremrexlimdvw 2587* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 18-Jun-2014.)
 |-  ( ph  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
 
Theoremrexlimddv 2588* Restricted existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 15-Jun-2016.)
 |-  ( ph  ->  E. x  e.  A  ps )   &    |-  (
 ( ph  /\  ( x  e.  A  /\  ps ) )  ->  ch )   =>    |-  ( ph  ->  ch )
 
Theoremrexlimivv 2589* Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 17-Feb-2004.)
 |-  ( ( x  e.  A  /\  y  e.  B )  ->  ( ph  ->  ps ) )   =>    |-  ( E. x  e.  A  E. y  e.  B  ph  ->  ps )
 
Theoremrexlimdvv 2590* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 22-Jul-2004.)
 |-  ( ph  ->  (
 ( x  e.  A  /\  y  e.  B )  ->  ( ps  ->  ch ) ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
 
Theoremrexlimdvva 2591* Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.)
 |-  ( ( ph  /\  ( x  e.  A  /\  y  e.  B )
 )  ->  ( ps  ->  ch ) )   =>    |-  ( ph  ->  ( E. x  e.  A  E. y  e.  B  ps  ->  ch ) )
 
Theoremr19.26 2592 Theorem 19.26 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 28-Jan-1997.) (Proof shortened by Andrew Salmon, 30-May-2011.)
 |-  ( A. x  e.  A  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
 
Theoremr19.27v 2593* Restricted quantitifer version of one direction of 19.27 1549. (The other direction holds when  A is inhabited, see r19.27mv 3505.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
 |-  ( ( A. x  e.  A  ph  /\  ps )  ->  A. x  e.  A  ( ph  /\  ps )
 )
 
Theoremr19.28v 2594* Restricted quantifier version of one direction of 19.28 1551. (The other direction holds when  A is inhabited, see r19.28mv 3501.) (Contributed by NM, 2-Apr-2004.) (Proof shortened by Wolf Lammen, 17-Jun-2023.)
 |-  ( ( ph  /\  A. x  e.  A  ps )  ->  A. x  e.  A  ( ph  /\  ps )
 )
 
Theoremr19.26-2 2595 Theorem 19.26 of [Margaris] p. 90 with 2 restricted quantifiers. (Contributed by NM, 10-Aug-2004.)
 |-  ( A. x  e.  A  A. y  e.  B  ( ph  /\  ps ) 
 <->  ( A. x  e.  A  A. y  e.  B  ph  /\  A. x  e.  A  A. y  e.  B  ps ) )
 
Theoremr19.26-3 2596 Theorem 19.26 of [Margaris] p. 90 with 3 restricted quantifiers. (Contributed by FL, 22-Nov-2010.)
 |-  ( A. x  e.  A  ( ph  /\  ps  /\ 
 ch )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps  /\  A. x  e.  A  ch ) )
 
Theoremr19.26m 2597 Theorem 19.26 of [Margaris] p. 90 with mixed quantifiers. (Contributed by NM, 22-Feb-2004.)
 |-  ( A. x ( ( x  e.  A  -> 
 ph )  /\  ( x  e.  B  ->  ps ) )  <->  ( A. x  e.  A  ph  /\  A. x  e.  B  ps ) )
 
Theoremralbi 2598 Distribute a restricted universal quantifier over a biconditional. Theorem 19.15 of [Margaris] p. 90 with restricted quantification. (Contributed by NM, 6-Oct-2003.)
 |-  ( A. x  e.  A  ( ph  <->  ps )  ->  ( A. x  e.  A  ph  <->  A. x  e.  A  ps ) )
 
Theoremrexbi 2599 Distribute a restricted existential quantifier over a biconditional. Theorem 19.18 of [Margaris] p. 90 with restricted quantification. (Contributed by Jim Kingdon, 21-Jan-2019.)
 |-  ( A. x  e.  A  ( ph  <->  ps )  ->  ( E. x  e.  A  ph  <->  E. x  e.  A  ps ) )
 
Theoremralbiim 2600 Split a biconditional and distribute quantifier. (Contributed by NM, 3-Jun-2012.)
 |-  ( A. x  e.  A  ( ph  <->  ps )  <->  ( A. x  e.  A  ( ph  ->  ps )  /\  A. x  e.  A  ( ps  ->  ph ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13960
  Copyright terms: Public domain < Previous  Next >