ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hba1 Unicode version

Theorem hba1 1528
Description:  x is not free in  A. x ph. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
hba1  |-  ( A. x ph  ->  A. x A. x ph )

Proof of Theorem hba1
StepHypRef Expression
1 ax-ial 1522 1  |-  ( A. x ph  ->  A. x A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1341
This theorem was proved from axioms:  ax-ial 1522
This theorem is referenced by:  nfa1  1529  a5i  1531  hba2  1539  hbia1  1540  19.21h  1545  19.21ht  1569  exim  1587  19.12  1653  19.38  1664  ax9o  1686  equveli  1747  nfald  1748  equs5a  1782  ax11v2  1808  equs5  1817  equs5or  1818  sb56  1873  hbsb4t  2001  hbeu1  2024  eupickbi  2096  moexexdc  2098  2eu4  2107  exists2  2111  hbra1  2496
  Copyright terms: Public domain W3C validator