![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ral | Unicode version |
Description: Define restricted universal quantification. Special case of Definition 4.15(3) of [TakeutiZaring] p. 22. (Contributed by NM, 19-Aug-1993.) |
Ref | Expression |
---|---|
df-ral |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph |
. . 3
![]() ![]() | |
2 | vx |
. . 3
![]() ![]() | |
3 | cA |
. . 3
![]() ![]() | |
4 | 1, 2, 3 | wral 2472 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2 | cv 1363 |
. . . . 5
![]() ![]() |
6 | 5, 3 | wcel 2164 |
. . . 4
![]() ![]() ![]() ![]() |
7 | 6, 1 | wi 4 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 7, 2 | wal 1362 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 4, 8 | wb 105 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: ralnex 2482 rexnalim 2483 dfrex2dc 2485 ralbida 2488 ralbidv2 2496 ralbid2 2498 ralbii2 2504 r2alf 2511 hbral 2523 hbra1 2524 nfra1 2525 nfraldw 2526 nfraldxy 2527 nfraldya 2529 r3al 2538 alral 2539 rsp 2541 rgen 2547 rgen2a 2548 ralim 2553 ralimi2 2554 ralimdaa 2560 ralimdv2 2564 ralrimi 2565 r19.21t 2569 ralrimd 2572 r19.21bi 2582 rexim 2588 r19.23t 2601 r19.26m 2625 r19.32r 2640 rabid2 2671 rabbi 2672 raleqf 2686 cbvralfw 2716 cbvralf 2718 cbvralvw 2730 cbvraldva2 2733 ralv 2777 ceqsralt 2787 rspct 2857 rspc 2858 rspcimdv 2865 rspc2gv 2876 ralab 2920 ralab2 2924 ralrab2 2925 reu2 2948 reu6 2949 reu3 2950 rmo4 2953 reu8 2956 rmo3f 2957 rmoim 2961 2reuswapdc 2964 2rmorex 2966 ra5 3074 rmo2ilem 3075 rmo3 3077 cbvralcsf 3143 dfss3 3169 dfss3f 3171 ssabral 3250 ss2rab 3255 rabss 3256 ssrab 3257 dfdif3 3269 ralunb 3340 reuss2 3439 rabeq0 3476 rabxmdc 3478 disj 3495 disj1 3497 r19.2m 3533 r19.2mOLD 3534 r19.3rm 3535 ralidm 3547 ralf0 3549 ralm 3550 ralsnsg 3655 ralsns 3656 unissb 3865 dfint2 3872 elint2 3877 elintrab 3882 ssintrab 3893 dfiin2g 3945 invdisj 4023 dftr5 4130 trint 4142 repizf2lem 4190 ordsucim 4532 ordunisuc2r 4546 setindel 4570 elirr 4573 en2lp 4586 zfregfr 4606 tfi 4614 zfinf2 4621 peano2 4627 peano5 4630 find 4631 raliunxp 4803 dmopab3 4875 issref 5048 asymref 5051 dffun7 5281 funcnv 5315 funcnvuni 5323 fnres 5370 fnopabg 5377 rexrnmpt 5701 dffo3 5705 acexmidlem2 5915 nfixpxy 6771 pw1dc0el 6967 isomnimap 7196 ismkvmap 7213 iswomnimap 7225 fz1sbc 10162 nnwosdc 12176 isprm2 12255 istopg 14167 cbvrald 15280 decidr 15288 bdcint 15369 bdcriota 15375 bj-axempty 15385 bj-indind 15424 bj-ssom 15428 findset 15437 bj-nnord 15450 bj-inf2vn 15466 bj-inf2vn2 15467 bj-findis 15471 alsconv 15570 |
Copyright terms: Public domain | W3C validator |