ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbxfrbi Unicode version

Theorem hbxfrbi 1486
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1  |-  ( ph  <->  ps )
hbxfrbi.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
hbxfrbi  |-  ( ph  ->  A. x ph )

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2  |-  ( ps 
->  A. x ps )
2 hbxfrbi.1 . 2  |-  ( ph  <->  ps )
32albii 1484 . 2  |-  ( A. x ph  <->  A. x ps )
41, 2, 33imtr4i 201 1  |-  ( ph  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  hbbi  1562  hb3or  1563  hb3an  1564  hbs1f  1795  hbs1  1957  hbsbv  1960  hbeu1  2055  sb8euh  2068  hbmo1  2083  hbmo  2084  hbab1  2185  hbab  2187  cleqh  2296  hbxfreq  2303  hbral  2526  hbra1  2527
  Copyright terms: Public domain W3C validator