ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbxfrbi Unicode version

Theorem hbxfrbi 1518
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1  |-  ( ph  <->  ps )
hbxfrbi.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
hbxfrbi  |-  ( ph  ->  A. x ph )

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2  |-  ( ps 
->  A. x ps )
2 hbxfrbi.1 . 2  |-  ( ph  <->  ps )
32albii 1516 . 2  |-  ( A. x ph  <->  A. x ps )
41, 2, 33imtr4i 201 1  |-  ( ph  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-gen 1495
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  hbbi  1594  hb3or  1595  hb3an  1596  hbs1f  1827  hbs1  1989  hbsbv  1992  hbeu1  2087  sb8euh  2100  hbmo1  2115  hbmo  2116  hbab1  2218  hbab  2220  cleqh  2329  hbxfreq  2336  hbral  2559  hbra1  2560
  Copyright terms: Public domain W3C validator