ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbxfrbi Unicode version

Theorem hbxfrbi 1483
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1  |-  ( ph  <->  ps )
hbxfrbi.2  |-  ( ps 
->  A. x ps )
Assertion
Ref Expression
hbxfrbi  |-  ( ph  ->  A. x ph )

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2  |-  ( ps 
->  A. x ps )
2 hbxfrbi.1 . 2  |-  ( ph  <->  ps )
32albii 1481 . 2  |-  ( A. x ph  <->  A. x ps )
41, 2, 33imtr4i 201 1  |-  ( ph  ->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  hbbi  1559  hb3or  1560  hb3an  1561  hbs1f  1792  hbs1  1954  hbsbv  1957  hbeu1  2052  sb8euh  2065  hbmo1  2080  hbmo  2081  hbab1  2182  hbab  2184  cleqh  2293  hbxfreq  2300  hbral  2523  hbra1  2524
  Copyright terms: Public domain W3C validator