![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfra1 | Unicode version |
Description: ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfra1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2460 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfa1 1541 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfxfr 1474 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-gen 1449 ax-ial 1534 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-ral 2460 |
This theorem is referenced by: nfra2xy 2519 r19.12 2583 ralbi 2609 rexbi 2610 nfss 3150 ralidm 3525 nfii1 3919 dfiun2g 3920 mpteq12f 4085 reusv1 4460 ralxfrALT 4469 peano2 4596 fun11iun 5484 fvmptssdm 5602 ffnfv 5676 riota5f 5857 mpoeq123 5936 tfri3 6370 nfixp1 6720 nneneq 6859 exmidomni 7142 mkvprop 7158 caucvgsrlemgt1 7796 suplocsrlem 7809 lble 8906 indstr 9595 fimaxre2 11237 prodeq2 11567 zsupcllemstep 11948 bezoutlemmain 12001 bezoutlemzz 12005 exmidunben 12429 mulcncf 14176 limccnp2cntop 14231 bj-rspgt 14623 isomninnlem 14863 iswomninnlem 14882 ismkvnnlem 14885 |
Copyright terms: Public domain | W3C validator |