Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nfra1 | Unicode version |
Description: is not free in . (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfra1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2440 | . 2 | |
2 | nfa1 1521 | . 2 | |
3 | 1, 2 | nfxfr 1454 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wal 1333 wnf 1440 wcel 2128 wral 2435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ial 1514 |
This theorem depends on definitions: df-bi 116 df-nf 1441 df-ral 2440 |
This theorem is referenced by: nfra2xy 2499 r19.12 2563 ralbi 2589 rexbi 2590 nfss 3121 ralidm 3494 nfii1 3880 dfiun2g 3881 mpteq12f 4044 reusv1 4416 ralxfrALT 4425 peano2 4552 fun11iun 5432 fvmptssdm 5549 ffnfv 5622 riota5f 5798 mpoeq123 5874 tfri3 6308 nfixp1 6656 nneneq 6795 exmidomni 7068 mkvprop 7084 caucvgsrlemgt1 7698 suplocsrlem 7711 lble 8801 indstr 9487 fimaxre2 11108 prodeq2 11436 zsupcllemstep 11813 bezoutlemmain 11862 bezoutlemzz 11866 exmidunben 12127 mulcncf 12951 limccnp2cntop 13006 bj-rspgt 13319 isomninnlem 13563 iswomninnlem 13582 ismkvnnlem 13585 |
Copyright terms: Public domain | W3C validator |