![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfra1 | Unicode version |
Description: ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfra1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2477 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfa1 1552 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfxfr 1485 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: nfra2xy 2536 r19.12 2600 ralbi 2626 rexbi 2627 nfss 3172 ralidm 3547 nfii1 3943 dfiun2g 3944 mpteq12f 4109 reusv1 4489 ralxfrALT 4498 peano2 4627 fun11iun 5521 fvmptssdm 5642 ffnfv 5716 riota5f 5898 mpoeq123 5977 tfri3 6420 nfixp1 6772 nneneq 6913 exmidomni 7201 mkvprop 7217 caucvgsrlemgt1 7855 suplocsrlem 7868 lble 8966 indstr 9658 nninfinf 10514 fimaxre2 11370 prodeq2 11700 zsupcllemstep 12082 bezoutlemmain 12135 bezoutlemzz 12139 exmidunben 12583 mulcncf 14762 limccnp2cntop 14831 bj-rspgt 15278 isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |