![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nfra1 | Unicode version |
Description: ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfra1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2477 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfa1 1552 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | nfxfr 1485 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ial 1545 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-ral 2477 |
This theorem is referenced by: nfra2xy 2536 r19.12 2600 ralbi 2626 rexbi 2627 nfss 3173 ralidm 3548 nfii1 3944 dfiun2g 3945 mpteq12f 4110 reusv1 4490 ralxfrALT 4499 peano2 4628 fun11iun 5522 fvmptssdm 5643 ffnfv 5717 riota5f 5899 mpoeq123 5978 tfri3 6422 nfixp1 6774 nneneq 6915 exmidomni 7203 mkvprop 7219 caucvgsrlemgt1 7857 suplocsrlem 7870 lble 8968 indstr 9661 nninfinf 10517 fimaxre2 11373 prodeq2 11703 zsupcllemstep 12085 bezoutlemmain 12138 bezoutlemzz 12142 exmidunben 12586 mulcncf 14787 limccnp2cntop 14856 bj-rspgt 15348 isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |