ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfra1 Unicode version

Theorem nfra1 2528
Description:  x is not free in  A. x  e.  A ph. (Contributed by NM, 18-Oct-1996.) (Revised by Mario Carneiro, 7-Oct-2016.)
Assertion
Ref Expression
nfra1  |-  F/ x A. x  e.  A  ph

Proof of Theorem nfra1
StepHypRef Expression
1 df-ral 2480 . 2  |-  ( A. x  e.  A  ph  <->  A. x
( x  e.  A  ->  ph ) )
2 nfa1 1555 . 2  |-  F/ x A. x ( x  e.  A  ->  ph )
31, 2nfxfr 1488 1  |-  F/ x A. x  e.  A  ph
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   F/wnf 1474    e. wcel 2167   A.wral 2475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ial 1548
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-ral 2480
This theorem is referenced by:  nfra2xy  2539  r19.12  2603  ralbi  2629  rexbi  2630  nfss  3177  ralidm  3552  nfii1  3948  dfiun2g  3949  mpteq12f  4114  reusv1  4494  ralxfrALT  4503  peano2  4632  fun11iun  5526  fvmptssdm  5647  ffnfv  5721  riota5f  5903  mpoeq123  5983  tfri3  6427  nfixp1  6779  nneneq  6920  exmidomni  7210  mkvprop  7226  caucvgsrlemgt1  7865  suplocsrlem  7878  lble  8977  indstr  9670  zsupcllemstep  10322  nninfinf  10538  fimaxre2  11395  prodeq2  11725  bezoutlemmain  12176  bezoutlemzz  12180  exmidunben  12654  mulcncf  14870  limccnp2cntop  14939  bj-rspgt  15458  isomninnlem  15703  iswomninnlem  15722  ismkvnnlem  15725
  Copyright terms: Public domain W3C validator