ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbral Unicode version

Theorem hbral 2504
Description: Bound-variable hypothesis builder for restricted quantification. (Contributed by NM, 1-Sep-1999.) (Revised by David Abernethy, 13-Dec-2009.)
Hypotheses
Ref Expression
hbral.1  |-  ( y  e.  A  ->  A. x  y  e.  A )
hbral.2  |-  ( ph  ->  A. x ph )
Assertion
Ref Expression
hbral  |-  ( A. y  e.  A  ph  ->  A. x A. y  e.  A  ph )

Proof of Theorem hbral
StepHypRef Expression
1 df-ral 2458 . 2  |-  ( A. y  e.  A  ph  <->  A. y
( y  e.  A  ->  ph ) )
2 hbral.1 . . . 4  |-  ( y  e.  A  ->  A. x  y  e.  A )
3 hbral.2 . . . 4  |-  ( ph  ->  A. x ph )
42, 3hbim 1543 . . 3  |-  ( ( y  e.  A  ->  ph )  ->  A. x
( y  e.  A  ->  ph ) )
54hbal 1475 . 2  |-  ( A. y ( y  e.  A  ->  ph )  ->  A. x A. y ( y  e.  A  ->  ph ) )
61, 5hbxfrbi 1470 1  |-  ( A. y  e.  A  ph  ->  A. x A. y  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1351    e. wcel 2146   A.wral 2453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-4 1508  ax-i5r 1533
This theorem depends on definitions:  df-bi 117  df-ral 2458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator