ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpdc Unicode version

Theorem ifpdc 985
Description: The conditional operator for propositions implies decidability. (Contributed by Jim Kingdon, 25-Jan-2026.)
Assertion
Ref Expression
ifpdc  |-  (if- (
ph ,  ps ,  ch )  -> DECID  ph )

Proof of Theorem ifpdc
StepHypRef Expression
1 simpl 109 . . 3  |-  ( (
ph  /\  ps )  ->  ph )
2 simpl 109 . . 3  |-  ( ( -.  ph  /\  ch )  ->  -.  ph )
31, 2orim12i 764 . 2  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) )  -> 
( ph  \/  -.  ph ) )
4 df-ifp 984 . 2  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ch )
) )
5 df-dc 840 . 2  |-  (DECID  ph  <->  ( ph  \/  -.  ph ) )
63, 4, 53imtr4i 201 1  |-  (if- (
ph ,  ps ,  ch )  -> DECID  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984
This theorem is referenced by:  ifpnst  994
  Copyright terms: Public domain W3C validator