![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biidd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 171 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 3anbi1d 1327 3anbi2d 1328 3anbi3d 1329 sb6x 1790 exdistrfor 1811 a16g 1875 rr19.3v 2900 rr19.28v 2901 euxfr2dc 2946 dfif3 3571 undifexmid 4223 exmidexmid 4226 exmidsssnc 4233 copsexg 4274 ordtriexmidlem2 4553 ordtriexmid 4554 ontriexmidim 4555 ordtri2orexmid 4556 ontr2exmid 4558 ordtri2or2exmidlem 4559 onsucsssucexmid 4560 ordsoexmid 4595 0elsucexmid 4598 ordpwsucexmid 4603 ordtri2or2exmid 4604 ontri2orexmidim 4605 dcextest 4614 riotabidv 5876 ov6g 6058 ovg 6059 dfxp3 6249 ssfilem 6933 diffitest 6945 inffiexmid 6964 unfiexmid 6976 snexxph 7011 ctssexmid 7211 exmidonfinlem 7255 ltsopi 7382 pitri3or 7384 creur 8980 creui 8981 pceu 12436 2irrexpqap 15151 subctctexmid 15561 |
Copyright terms: Public domain | W3C validator |