| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 3anbi1d 1329 3anbi2d 1330 3anbi3d 1331 sb6x 1803 exdistrfor 1824 a16g 1888 rr19.3v 2919 rr19.28v 2920 euxfr2dc 2965 dfif3 3593 undifexmid 4253 exmidexmid 4256 exmidsssnc 4263 copsexg 4306 ordtriexmidlem2 4586 ordtriexmid 4587 ontriexmidim 4588 ordtri2orexmid 4589 ontr2exmid 4591 ordtri2or2exmidlem 4592 onsucsssucexmid 4593 ordsoexmid 4628 0elsucexmid 4631 ordpwsucexmid 4636 ordtri2or2exmid 4637 ontri2orexmidim 4638 dcextest 4647 riotabidv 5924 ov6g 6107 ovg 6108 dfxp3 6303 ssfilem 6998 diffitest 7010 inffiexmid 7029 unfiexmid 7041 snexxph 7078 ctssexmid 7278 exmidonfinlem 7332 ltsopi 7468 pitri3or 7470 creur 9067 creui 9068 pceu 12733 2irrexpqap 15565 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |