Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biidd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 170 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3anbi12d 1308 3anbi13d 1309 3anbi23d 1310 3anbi1d 1311 3anbi2d 1312 3anbi3d 1313 sb6x 1772 exdistrfor 1793 a16g 1857 rr19.3v 2869 rr19.28v 2870 euxfr2dc 2915 dfif3 3539 undifexmid 4179 exmidexmid 4182 exmidsssnc 4189 copsexg 4229 ordtriexmidlem2 4504 ordtriexmid 4505 ontriexmidim 4506 ordtri2orexmid 4507 ontr2exmid 4509 ordtri2or2exmidlem 4510 onsucsssucexmid 4511 ordsoexmid 4546 0elsucexmid 4549 ordpwsucexmid 4554 ordtri2or2exmid 4555 ontri2orexmidim 4556 dcextest 4565 riotabidv 5811 ov6g 5990 ovg 5991 dfxp3 6173 ssfilem 6853 diffitest 6865 inffiexmid 6884 unfiexmid 6895 snexxph 6927 ctssexmid 7126 exmidonfinlem 7170 ltsopi 7282 pitri3or 7284 creur 8875 creui 8876 pceu 12249 2irrexpqap 13690 subctctexmid 14034 |
Copyright terms: Public domain | W3C validator |