![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biidd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 171 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anbi12d 1313 3anbi13d 1314 3anbi23d 1315 3anbi1d 1316 3anbi2d 1317 3anbi3d 1318 sb6x 1779 exdistrfor 1800 a16g 1864 rr19.3v 2876 rr19.28v 2877 euxfr2dc 2922 dfif3 3547 undifexmid 4193 exmidexmid 4196 exmidsssnc 4203 copsexg 4244 ordtriexmidlem2 4519 ordtriexmid 4520 ontriexmidim 4521 ordtri2orexmid 4522 ontr2exmid 4524 ordtri2or2exmidlem 4525 onsucsssucexmid 4526 ordsoexmid 4561 0elsucexmid 4564 ordpwsucexmid 4569 ordtri2or2exmid 4570 ontri2orexmidim 4571 dcextest 4580 riotabidv 5832 ov6g 6011 ovg 6012 dfxp3 6194 ssfilem 6874 diffitest 6886 inffiexmid 6905 unfiexmid 6916 snexxph 6948 ctssexmid 7147 exmidonfinlem 7191 ltsopi 7318 pitri3or 7320 creur 8915 creui 8916 pceu 12294 2irrexpqap 14366 subctctexmid 14720 |
Copyright terms: Public domain | W3C validator |