| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 3anbi1d 1327 3anbi2d 1328 3anbi3d 1329 sb6x 1793 exdistrfor 1814 a16g 1878 rr19.3v 2903 rr19.28v 2904 euxfr2dc 2949 dfif3 3575 undifexmid 4227 exmidexmid 4230 exmidsssnc 4237 copsexg 4278 ordtriexmidlem2 4557 ordtriexmid 4558 ontriexmidim 4559 ordtri2orexmid 4560 ontr2exmid 4562 ordtri2or2exmidlem 4563 onsucsssucexmid 4564 ordsoexmid 4599 0elsucexmid 4602 ordpwsucexmid 4607 ordtri2or2exmid 4608 ontri2orexmidim 4609 dcextest 4618 riotabidv 5882 ov6g 6065 ovg 6066 dfxp3 6261 ssfilem 6945 diffitest 6957 inffiexmid 6976 unfiexmid 6988 snexxph 7025 ctssexmid 7225 exmidonfinlem 7272 ltsopi 7404 pitri3or 7406 creur 9003 creui 9004 pceu 12489 2irrexpqap 15298 subctctexmid 15731 |
| Copyright terms: Public domain | W3C validator |