Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biidd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 171 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anbi12d 1313 3anbi13d 1314 3anbi23d 1315 3anbi1d 1316 3anbi2d 1317 3anbi3d 1318 sb6x 1777 exdistrfor 1798 a16g 1862 rr19.3v 2874 rr19.28v 2875 euxfr2dc 2920 dfif3 3545 undifexmid 4188 exmidexmid 4191 exmidsssnc 4198 copsexg 4238 ordtriexmidlem2 4513 ordtriexmid 4514 ontriexmidim 4515 ordtri2orexmid 4516 ontr2exmid 4518 ordtri2or2exmidlem 4519 onsucsssucexmid 4520 ordsoexmid 4555 0elsucexmid 4558 ordpwsucexmid 4563 ordtri2or2exmid 4564 ontri2orexmidim 4565 dcextest 4574 riotabidv 5823 ov6g 6002 ovg 6003 dfxp3 6185 ssfilem 6865 diffitest 6877 inffiexmid 6896 unfiexmid 6907 snexxph 6939 ctssexmid 7138 exmidonfinlem 7182 ltsopi 7294 pitri3or 7296 creur 8889 creui 8890 pceu 12262 2irrexpqap 13967 subctctexmid 14311 |
Copyright terms: Public domain | W3C validator |