| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anbi12d 1324 3anbi13d 1325 3anbi23d 1326 3anbi1d 1327 3anbi2d 1328 3anbi3d 1329 sb6x 1793 exdistrfor 1814 a16g 1878 rr19.3v 2903 rr19.28v 2904 euxfr2dc 2949 dfif3 3574 undifexmid 4226 exmidexmid 4229 exmidsssnc 4236 copsexg 4277 ordtriexmidlem2 4556 ordtriexmid 4557 ontriexmidim 4558 ordtri2orexmid 4559 ontr2exmid 4561 ordtri2or2exmidlem 4562 onsucsssucexmid 4563 ordsoexmid 4598 0elsucexmid 4601 ordpwsucexmid 4606 ordtri2or2exmid 4607 ontri2orexmidim 4608 dcextest 4617 riotabidv 5879 ov6g 6061 ovg 6062 dfxp3 6252 ssfilem 6936 diffitest 6948 inffiexmid 6967 unfiexmid 6979 snexxph 7016 ctssexmid 7216 exmidonfinlem 7260 ltsopi 7387 pitri3or 7389 creur 8986 creui 8987 pceu 12464 2irrexpqap 15214 subctctexmid 15645 |
| Copyright terms: Public domain | W3C validator |