![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > biidd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 171 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | a1i 9 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3anbi12d 1313 3anbi13d 1314 3anbi23d 1315 3anbi1d 1316 3anbi2d 1317 3anbi3d 1318 sb6x 1779 exdistrfor 1800 a16g 1864 rr19.3v 2877 rr19.28v 2878 euxfr2dc 2923 dfif3 3548 undifexmid 4194 exmidexmid 4197 exmidsssnc 4204 copsexg 4245 ordtriexmidlem2 4520 ordtriexmid 4521 ontriexmidim 4522 ordtri2orexmid 4523 ontr2exmid 4525 ordtri2or2exmidlem 4526 onsucsssucexmid 4527 ordsoexmid 4562 0elsucexmid 4565 ordpwsucexmid 4570 ordtri2or2exmid 4571 ontri2orexmidim 4572 dcextest 4581 riotabidv 5833 ov6g 6012 ovg 6013 dfxp3 6195 ssfilem 6875 diffitest 6887 inffiexmid 6906 unfiexmid 6917 snexxph 6949 ctssexmid 7148 exmidonfinlem 7192 ltsopi 7319 pitri3or 7321 creur 8916 creui 8917 pceu 12295 2irrexpqap 14399 subctctexmid 14753 |
Copyright terms: Public domain | W3C validator |