| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 3anbi1d 1329 3anbi2d 1330 3anbi3d 1331 sb6x 1802 exdistrfor 1823 a16g 1887 rr19.3v 2912 rr19.28v 2913 euxfr2dc 2958 dfif3 3584 undifexmid 4237 exmidexmid 4240 exmidsssnc 4247 copsexg 4288 ordtriexmidlem2 4568 ordtriexmid 4569 ontriexmidim 4570 ordtri2orexmid 4571 ontr2exmid 4573 ordtri2or2exmidlem 4574 onsucsssucexmid 4575 ordsoexmid 4610 0elsucexmid 4613 ordpwsucexmid 4618 ordtri2or2exmid 4619 ontri2orexmidim 4620 dcextest 4629 riotabidv 5901 ov6g 6084 ovg 6085 dfxp3 6280 ssfilem 6972 diffitest 6984 inffiexmid 7003 unfiexmid 7015 snexxph 7052 ctssexmid 7252 exmidonfinlem 7301 ltsopi 7433 pitri3or 7435 creur 9032 creui 9033 pceu 12618 2irrexpqap 15450 subctctexmid 15937 |
| Copyright terms: Public domain | W3C validator |