| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: ifpbi23d 999 3anbi12d 1347 3anbi13d 1348 3anbi23d 1349 3anbi1d 1350 3anbi2d 1351 3anbi3d 1352 sb6x 1825 exdistrfor 1846 a16g 1910 rr19.3v 2942 rr19.28v 2943 euxfr2dc 2988 dfif3 3616 undifexmid 4277 exmidexmid 4280 exmidsssnc 4287 copsexg 4330 ordtriexmidlem2 4612 ordtriexmid 4613 ontriexmidim 4614 ordtri2orexmid 4615 ontr2exmid 4617 ordtri2or2exmidlem 4618 onsucsssucexmid 4619 ordsoexmid 4654 0elsucexmid 4657 ordpwsucexmid 4662 ordtri2or2exmid 4663 ontri2orexmidim 4664 dcextest 4673 riotabidv 5956 ov6g 6143 ovg 6144 dfxp3 6340 ssfilem 7037 diffitest 7049 inffiexmid 7068 unfiexmid 7080 snexxph 7117 ctssexmid 7317 exmidonfinlem 7371 ltsopi 7507 pitri3or 7509 creur 9106 creui 9107 pceu 12818 2irrexpqap 15652 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |