Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > biidd | Unicode version |
Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
Ref | Expression |
---|---|
biidd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 170 | . 2 | |
2 | 1 | a1i 9 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 3anbi12d 1303 3anbi13d 1304 3anbi23d 1305 3anbi1d 1306 3anbi2d 1307 3anbi3d 1308 sb6x 1767 exdistrfor 1788 a16g 1852 rr19.3v 2865 rr19.28v 2866 euxfr2dc 2911 dfif3 3533 undifexmid 4172 exmidexmid 4175 exmidsssnc 4182 copsexg 4222 ordtriexmidlem2 4497 ordtriexmid 4498 ontriexmidim 4499 ordtri2orexmid 4500 ontr2exmid 4502 ordtri2or2exmidlem 4503 onsucsssucexmid 4504 ordsoexmid 4539 0elsucexmid 4542 ordpwsucexmid 4547 ordtri2or2exmid 4548 ontri2orexmidim 4549 dcextest 4558 riotabidv 5800 ov6g 5979 ovg 5980 dfxp3 6162 ssfilem 6841 diffitest 6853 inffiexmid 6872 unfiexmid 6883 snexxph 6915 ctssexmid 7114 exmidonfinlem 7149 ltsopi 7261 pitri3or 7263 creur 8854 creui 8855 pceu 12227 2irrexpqap 13536 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |