| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > biidd | Unicode version | ||
| Description: Principle of identity with antecedent. (Contributed by NM, 25-Nov-1995.) |
| Ref | Expression |
|---|---|
| biidd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 171 |
. 2
| |
| 2 | 1 | a1i 9 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3anbi12d 1326 3anbi13d 1327 3anbi23d 1328 3anbi1d 1329 3anbi2d 1330 3anbi3d 1331 sb6x 1802 exdistrfor 1823 a16g 1887 rr19.3v 2912 rr19.28v 2913 euxfr2dc 2958 dfif3 3584 undifexmid 4238 exmidexmid 4241 exmidsssnc 4248 copsexg 4289 ordtriexmidlem2 4569 ordtriexmid 4570 ontriexmidim 4571 ordtri2orexmid 4572 ontr2exmid 4574 ordtri2or2exmidlem 4575 onsucsssucexmid 4576 ordsoexmid 4611 0elsucexmid 4614 ordpwsucexmid 4619 ordtri2or2exmid 4620 ontri2orexmidim 4621 dcextest 4630 riotabidv 5903 ov6g 6086 ovg 6087 dfxp3 6282 ssfilem 6974 diffitest 6986 inffiexmid 7005 unfiexmid 7017 snexxph 7054 ctssexmid 7254 exmidonfinlem 7303 ltsopi 7435 pitri3or 7437 creur 9034 creui 9035 pceu 12651 2irrexpqap 15483 subctctexmid 15974 |
| Copyright terms: Public domain | W3C validator |