ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  wksfval Unicode version

Theorem wksfval 16028
Description: The set of walks (in an undirected graph). (Contributed by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
wksfval.v  |-  V  =  (Vtx `  G )
wksfval.i  |-  I  =  (iEdg `  G )
Assertion
Ref Expression
wksfval  |-  ( G  e.  W  ->  (Walks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) } )
Distinct variable groups:    f, G, k, p    f, I, p    V, p    f, W
Allowed substitution hints:    I( k)    V( f, k)    W( k, p)

Proof of Theorem wksfval
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 df-wlks 16025 . 2  |- Walks  =  ( g  e.  _V  |->  {
<. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( `  f )
) --> (Vtx `  g
)  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) } )
2 fveq2 5626 . . . . . . . 8  |-  ( g  =  G  ->  (iEdg `  g )  =  (iEdg `  G ) )
3 wksfval.i . . . . . . . 8  |-  I  =  (iEdg `  G )
42, 3eqtr4di 2280 . . . . . . 7  |-  ( g  =  G  ->  (iEdg `  g )  =  I )
54dmeqd 4924 . . . . . 6  |-  ( g  =  G  ->  dom  (iEdg `  g )  =  dom  I )
6 wrdeq 11088 . . . . . 6  |-  ( dom  (iEdg `  g )  =  dom  I  -> Word  dom  (iEdg `  g )  = Word  dom  I )
75, 6syl 14 . . . . 5  |-  ( g  =  G  -> Word  dom  (iEdg `  g )  = Word  dom  I )
87eleq2d 2299 . . . 4  |-  ( g  =  G  ->  (
f  e. Word  dom  (iEdg `  g )  <->  f  e. Word  dom  I ) )
9 fveq2 5626 . . . . . 6  |-  ( g  =  G  ->  (Vtx `  g )  =  (Vtx
`  G ) )
10 wksfval.v . . . . . 6  |-  V  =  (Vtx `  G )
119, 10eqtr4di 2280 . . . . 5  |-  ( g  =  G  ->  (Vtx `  g )  =  V )
1211feq3d 5461 . . . 4  |-  ( g  =  G  ->  (
p : ( 0 ... ( `  f
) ) --> (Vtx `  g )  <->  p :
( 0 ... ( `  f ) ) --> V ) )
134fveq1d 5628 . . . . . . 7  |-  ( g  =  G  ->  (
(iEdg `  g ) `  ( f `  k
) )  =  ( I `  ( f `
 k ) ) )
1413eqeq1d 2238 . . . . . 6  |-  ( g  =  G  ->  (
( (iEdg `  g
) `  ( f `  k ) )  =  { ( p `  k ) }  <->  ( I `  ( f `  k
) )  =  {
( p `  k
) } ) )
1513sseq2d 3254 . . . . . 6  |-  ( g  =  G  ->  ( { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  (
f `  k )
)  <->  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) )
1614, 15ifpbi23d 999 . . . . 5  |-  ( g  =  G  ->  (if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  ( f `  k
) ) )  <-> if- ( (
p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) )
1716ralbidv 2530 . . . 4  |-  ( g  =  G  ->  ( A. k  e.  (
0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( (iEdg `  g ) `  (
f `  k )
)  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( (iEdg `  g ) `  ( f `  k
) ) )  <->  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) )
188, 12, 173anbi123d 1346 . . 3  |-  ( g  =  G  ->  (
( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( `  f )
) --> (Vtx `  g
)  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) )  <->  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f )
) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) ) )
1918opabbidv 4149 . 2  |-  ( g  =  G  ->  { <. f ,  p >.  |  ( f  e. Word  dom  (iEdg `  g )  /\  p : ( 0 ... ( `  f )
) --> (Vtx `  g
)  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( (iEdg `  g ) `  ( f `  k
) )  =  {
( p `  k
) } ,  {
( p `  k
) ,  ( p `
 ( k  +  1 ) ) } 
C_  ( (iEdg `  g ) `  (
f `  k )
) ) ) }  =  { <. f ,  p >.  |  (
f  e. Word  dom  I  /\  p : ( 0 ... ( `  f )
) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) } )
20 elex 2811 . 2  |-  ( G  e.  W  ->  G  e.  _V )
21 3anass 1006 . . . 4  |-  ( ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) )  <-> 
( f  e. Word  dom  I  /\  ( p : ( 0 ... ( `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) ) )
2221opabbii 4150 . . 3  |-  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) }  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  ( p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) ) }
23 iedgex 15814 . . . . . . 7  |-  ( G  e.  W  ->  (iEdg `  G )  e.  _V )
243, 23eqeltrid 2316 . . . . . 6  |-  ( G  e.  W  ->  I  e.  _V )
2524dmexd 4989 . . . . 5  |-  ( G  e.  W  ->  dom  I  e.  _V )
26 wrdexg 11077 . . . . 5  |-  ( dom  I  e.  _V  -> Word  dom  I  e.  _V )
2725, 26syl 14 . . . 4  |-  ( G  e.  W  -> Word  dom  I  e.  _V )
28 0zd 9454 . . . . . . 7  |-  ( f  e. Word  dom  I  ->  0  e.  ZZ )
29 lencl 11070 . . . . . . . 8  |-  ( f  e. Word  dom  I  ->  ( `  f )  e.  NN0 )
3029nn0zd 9563 . . . . . . 7  |-  ( f  e. Word  dom  I  ->  ( `  f )  e.  ZZ )
3128, 30fzfigd 10648 . . . . . 6  |-  ( f  e. Word  dom  I  ->  ( 0 ... ( `  f
) )  e.  Fin )
32 vtxex 15813 . . . . . . 7  |-  ( G  e.  W  ->  (Vtx `  G )  e.  _V )
3310, 32eqeltrid 2316 . . . . . 6  |-  ( G  e.  W  ->  V  e.  _V )
34 mapex 6799 . . . . . 6  |-  ( ( ( 0 ... ( `  f ) )  e. 
Fin  /\  V  e.  _V )  ->  { p  |  p : ( 0 ... ( `  f
) ) --> V }  e.  _V )
3531, 33, 34syl2anr 290 . . . . 5  |-  ( ( G  e.  W  /\  f  e. Word  dom  I )  ->  { p  |  p : ( 0 ... ( `  f
) ) --> V }  e.  _V )
36 simpl 109 . . . . . . 7  |-  ( ( p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) )  ->  p : ( 0 ... ( `  f
) ) --> V )
3736ss2abi 3296 . . . . . 6  |-  { p  |  ( p : ( 0 ... ( `  f ) ) --> V  /\  A. k  e.  ( 0..^ ( `  f
) )if- ( ( p `  k )  =  ( p `  ( k  +  1 ) ) ,  ( I `  ( f `
 k ) )  =  { ( p `
 k ) } ,  { ( p `
 k ) ,  ( p `  (
k  +  1 ) ) }  C_  (
I `  ( f `  k ) ) ) ) }  C_  { p  |  p : ( 0 ... ( `  f
) ) --> V }
3837a1i 9 . . . . 5  |-  ( ( G  e.  W  /\  f  e. Word  dom  I )  ->  { p  |  ( p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) }  C_  { p  |  p : ( 0 ... ( `  f
) ) --> V }
)
3935, 38ssexd 4223 . . . 4  |-  ( ( G  e.  W  /\  f  e. Word  dom  I )  ->  { p  |  ( p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) }  e.  _V )
4027, 39opabex3d 6264 . . 3  |-  ( G  e.  W  ->  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  ( p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) ) }  e.  _V )
4122, 40eqeltrid 2316 . 2  |-  ( G  e.  W  ->  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) }  e.  _V )
421, 19, 20, 41fvmptd3 5727 1  |-  ( G  e.  W  ->  (Walks `  G )  =  { <. f ,  p >.  |  ( f  e. Word  dom  I  /\  p : ( 0 ... ( `  f
) ) --> V  /\  A. k  e.  ( 0..^ ( `  f )
)if- ( ( p `
 k )  =  ( p `  (
k  +  1 ) ) ,  ( I `
 ( f `  k ) )  =  { ( p `  k ) } ,  { ( p `  k ) ,  ( p `  ( k  +  1 ) ) }  C_  ( I `  ( f `  k
) ) ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  if-wif 983    /\ w3a 1002    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   _Vcvv 2799    C_ wss 3197   {csn 3666   {cpr 3667   {copab 4143   dom cdm 4718   -->wf 5313   ` cfv 5317  (class class class)co 6000   Fincfn 6885   0cc0 7995   1c1 7996    + caddc 7998   ...cfz 10200  ..^cfzo 10334  ♯chash 10992  Word cword 11066  Vtxcvtx 15807  iEdgciedg 15808  Walkscwlks 16024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-ifp 984  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-map 6795  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-z 9443  df-dec 9575  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810  df-wlks 16025
This theorem is referenced by:  iswlk  16029  wlkpropg  16030  wlkvg  16031
  Copyright terms: Public domain W3C validator