ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifpfal Unicode version

Theorem ifpfal 996
Description: Value of the conditional operator for propositions when its first argument is false. Analogue for propositions of iffalse 3610. This is essentially dedlemb 976. (Contributed by BJ, 20-Sep-2019.) (Proof shortened by Wolf Lammen, 25-Jun-2020.)
Assertion
Ref Expression
ifpfal  |-  ( -. 
ph  ->  (if- ( ph ,  ps ,  ch )  <->  ch ) )

Proof of Theorem ifpfal
StepHypRef Expression
1 df-ifp 984 . . 3  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ph  /\ 
ps )  \/  ( -.  ph  /\  ch )
) )
2 ancom 266 . . . 4  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
3 ancom 266 . . . 4  |-  ( ( -.  ph  /\  ch )  <->  ( ch  /\  -.  ph ) )
42, 3orbi12i 769 . . 3  |-  ( ( ( ph  /\  ps )  \/  ( -.  ph 
/\  ch ) )  <->  ( ( ps  /\  ph )  \/  ( ch  /\  -.  ph ) ) )
51, 4bitri 184 . 2  |-  (if- (
ph ,  ps ,  ch )  <->  ( ( ps 
/\  ph )  \/  ( ch  /\  -.  ph )
) )
6 dedlemb 976 . 2  |-  ( -. 
ph  ->  ( ch  <->  ( ( ps  /\  ph )  \/  ( ch  /\  -.  ph ) ) ) )
75, 6bitr4id 199 1  |-  ( -. 
ph  ->  (if- ( ph ,  ps ,  ch )  <->  ch ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  if-wif 983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-ifp 984
This theorem is referenced by:  ifpiddc  997
  Copyright terms: Public domain W3C validator