ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalse Unicode version

Theorem iffalse 3570
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
iffalse  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )

Proof of Theorem iffalse
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-if 3563 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 dedlemb 972 . . 3  |-  ( -. 
ph  ->  ( x  e.  B  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) ) )
32abbi2dv 2315 . 2  |-  ( -. 
ph  ->  B  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) } )
41, 3eqtr4id 2248 1  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    e. wcel 2167   {cab 2182   ifcif 3562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3563
This theorem is referenced by:  iffalsei  3571  iffalsed  3572  ifnefalse  3573  ifsbdc  3574  ifcldadc  3591  ifeq1dadc  3592  ifbothdadc  3594  ifbothdc  3595  ifiddc  3596  ifcldcd  3598  ifnotdc  3599  ifandc  3600  ifordc  3601  ifnetruedc  3603  pw2f1odclem  6904  fidifsnen  6940  nnnninf  7201  uzin  9651  modifeq2int  10495  seqf1oglem1  10628  seqf1oglem2  10629  bcval  10858  bcval3  10860  sumrbdclem  11559  fsum3cvg  11560  summodclem2a  11563  sumsplitdc  11614  prodrbdclem  11753  fproddccvg  11754  prodssdc  11771  flodddiv4  12118  gcdn0val  12153  dfgcd2  12206  lcmn0val  12259  pcgcd  12523  pcmptcl  12536  pcmpt  12537  pcmpt2  12538  pcprod  12540  fldivp1  12542  unct  12684  lgsneg  15349  lgsdilem  15352  lgsdir2  15358  lgsdir  15360  lgsdi  15362  lgsne0  15363  gausslemma2dlem1a  15383  2lgslem1c  15415  2lgs  15429
  Copyright terms: Public domain W3C validator