| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalse | Unicode version | ||
| Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| iffalse |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3572 |
. 2
| |
| 2 | dedlemb 973 |
. . 3
| |
| 3 | 2 | abbi2dv 2324 |
. 2
|
| 4 | 1, 3 | eqtr4id 2257 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-if 3572 |
| This theorem is referenced by: iffalsei 3580 iffalsed 3581 ifnefalse 3582 ifsbdc 3583 ifcldadc 3600 ifeq1dadc 3601 ifeqdadc 3603 ifbothdadc 3604 ifbothdc 3605 ifiddc 3606 ifcldcd 3608 ifnotdc 3609 ifandc 3610 ifordc 3611 ifnetruedc 3613 pw2f1odclem 6931 fidifsnen 6967 nnnninf 7228 uzin 9681 modifeq2int 10531 seqf1oglem1 10664 seqf1oglem2 10665 bcval 10894 bcval3 10896 sumrbdclem 11688 fsum3cvg 11689 summodclem2a 11692 sumsplitdc 11743 prodrbdclem 11882 fproddccvg 11883 prodssdc 11900 flodddiv4 12247 gcdn0val 12282 dfgcd2 12335 lcmn0val 12388 pcgcd 12652 pcmptcl 12665 pcmpt 12666 pcmpt2 12667 pcprod 12669 fldivp1 12671 unct 12813 lgsneg 15501 lgsdilem 15504 lgsdir2 15510 lgsdir 15512 lgsdi 15514 lgsne0 15515 gausslemma2dlem1a 15535 2lgslem1c 15567 2lgs 15581 |
| Copyright terms: Public domain | W3C validator |