ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalse Unicode version

Theorem iffalse 3534
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
iffalse  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )

Proof of Theorem iffalse
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-if 3527 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 dedlemb 965 . . 3  |-  ( -. 
ph  ->  ( x  e.  B  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) ) )
32abbi2dv 2289 . 2  |-  ( -. 
ph  ->  B  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) } )
41, 3eqtr4id 2222 1  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141   {cab 2156   ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-if 3527
This theorem is referenced by:  iffalsei  3535  iffalsed  3536  ifnefalse  3537  ifsbdc  3538  ifcldadc  3555  ifeq1dadc  3556  ifbothdadc  3557  ifbothdc  3558  ifiddc  3559  ifcldcd  3561  ifnotdc  3562  ifandc  3563  ifordc  3564  fidifsnen  6848  nnnninf  7102  uzin  9519  modifeq2int  10342  bcval  10683  bcval3  10685  sumrbdclem  11340  fsum3cvg  11341  summodclem2a  11344  sumsplitdc  11395  prodrbdclem  11534  fproddccvg  11535  prodssdc  11552  flodddiv4  11893  gcdn0val  11916  dfgcd2  11969  lcmn0val  12020  pcgcd  12282  pcmptcl  12294  pcmpt  12295  pcmpt2  12296  pcprod  12298  fldivp1  12300  unct  12397  lgsneg  13719  lgsdilem  13722  lgsdir2  13728  lgsdir  13730  lgsdi  13732  lgsne0  13733
  Copyright terms: Public domain W3C validator