ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalse Unicode version

Theorem iffalse 3528
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
iffalse  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )

Proof of Theorem iffalse
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-if 3521 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 dedlemb 960 . . 3  |-  ( -. 
ph  ->  ( x  e.  B  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) ) )
32abbi2dv 2285 . 2  |-  ( -. 
ph  ->  B  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) } )
41, 3eqtr4id 2218 1  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343    e. wcel 2136   {cab 2151   ifcif 3520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-if 3521
This theorem is referenced by:  iffalsei  3529  iffalsed  3530  ifnefalse  3531  ifsbdc  3532  ifcldadc  3549  ifeq1dadc  3550  ifbothdadc  3551  ifbothdc  3552  ifiddc  3553  ifcldcd  3555  ifnotdc  3556  ifandc  3557  fidifsnen  6836  nnnninf  7090  uzin  9498  modifeq2int  10321  bcval  10662  bcval3  10664  sumrbdclem  11318  fsum3cvg  11319  summodclem2a  11322  sumsplitdc  11373  prodrbdclem  11512  fproddccvg  11513  prodssdc  11530  flodddiv4  11871  gcdn0val  11894  dfgcd2  11947  lcmn0val  11998  pcgcd  12260  pcmptcl  12272  pcmpt  12273  pcmpt2  12274  pcprod  12276  fldivp1  12278  unct  12375  lgsneg  13565  lgsdilem  13568  lgsdir2  13574  lgsdir  13576  lgsdi  13578  lgsne0  13579
  Copyright terms: Public domain W3C validator