![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iffalse | Unicode version |
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
iffalse |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3559 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dedlemb 972 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | abbi2dv 2312 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtr4id 2245 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3559 |
This theorem is referenced by: iffalsei 3567 iffalsed 3568 ifnefalse 3569 ifsbdc 3570 ifcldadc 3587 ifeq1dadc 3588 ifbothdadc 3590 ifbothdc 3591 ifiddc 3592 ifcldcd 3594 ifnotdc 3595 ifandc 3596 ifordc 3597 ifnetruedc 3599 pw2f1odclem 6892 fidifsnen 6928 nnnninf 7187 uzin 9628 modifeq2int 10460 seqf1oglem1 10593 seqf1oglem2 10594 bcval 10823 bcval3 10825 sumrbdclem 11523 fsum3cvg 11524 summodclem2a 11527 sumsplitdc 11578 prodrbdclem 11717 fproddccvg 11718 prodssdc 11735 flodddiv4 12078 gcdn0val 12101 dfgcd2 12154 lcmn0val 12207 pcgcd 12470 pcmptcl 12483 pcmpt 12484 pcmpt2 12485 pcprod 12487 fldivp1 12489 unct 12602 lgsneg 15181 lgsdilem 15184 lgsdir2 15190 lgsdir 15192 lgsdi 15194 lgsne0 15195 gausslemma2dlem1a 15215 2lgslem1c 15247 2lgs 15261 |
Copyright terms: Public domain | W3C validator |