| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iffalse | Unicode version | ||
| Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
| Ref | Expression |
|---|---|
| iffalse |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-if 3580 |
. 2
| |
| 2 | dedlemb 973 |
. . 3
| |
| 3 | 2 | abbi2dv 2326 |
. 2
|
| 4 | 1, 3 | eqtr4id 2259 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 |
| This theorem is referenced by: iffalsei 3588 iffalsed 3589 ifnefalse 3590 ifsbdc 3592 ifcldadc 3609 ifeq1dadc 3610 ifeqdadc 3612 ifbothdadc 3613 ifbothdc 3614 ifiddc 3615 ifcldcd 3617 ifnotdc 3618 2if2dc 3619 ifandc 3620 ifordc 3621 ifnetruedc 3623 pw2f1odclem 6956 fidifsnen 6993 nnnninf 7254 uzin 9716 modifeq2int 10568 seqf1oglem1 10701 seqf1oglem2 10702 bcval 10931 bcval3 10933 swrdccat 11226 pfxccat3a 11229 swrdccat3b 11231 sumrbdclem 11803 fsum3cvg 11804 summodclem2a 11807 sumsplitdc 11858 prodrbdclem 11997 fproddccvg 11998 prodssdc 12015 flodddiv4 12362 gcdn0val 12397 dfgcd2 12450 lcmn0val 12503 pcgcd 12767 pcmptcl 12780 pcmpt 12781 pcmpt2 12782 pcprod 12784 fldivp1 12786 unct 12928 lgsneg 15616 lgsdilem 15619 lgsdir2 15625 lgsdir 15627 lgsdi 15629 lgsne0 15630 gausslemma2dlem1a 15650 2lgslem1c 15682 2lgs 15696 |
| Copyright terms: Public domain | W3C validator |