ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalse Unicode version

Theorem iffalse 3543
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
iffalse  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )

Proof of Theorem iffalse
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-if 3536 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 dedlemb 970 . . 3  |-  ( -. 
ph  ->  ( x  e.  B  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) ) )
32abbi2dv 2296 . 2  |-  ( -. 
ph  ->  B  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) } )
41, 3eqtr4id 2229 1  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    e. wcel 2148   {cab 2163   ifcif 3535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-11 1506  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-if 3536
This theorem is referenced by:  iffalsei  3544  iffalsed  3545  ifnefalse  3546  ifsbdc  3547  ifcldadc  3564  ifeq1dadc  3565  ifbothdadc  3567  ifbothdc  3568  ifiddc  3569  ifcldcd  3571  ifnotdc  3572  ifandc  3573  ifordc  3574  fidifsnen  6870  nnnninf  7124  uzin  9560  modifeq2int  10386  bcval  10729  bcval3  10731  sumrbdclem  11385  fsum3cvg  11386  summodclem2a  11389  sumsplitdc  11440  prodrbdclem  11579  fproddccvg  11580  prodssdc  11597  flodddiv4  11939  gcdn0val  11962  dfgcd2  12015  lcmn0val  12066  pcgcd  12328  pcmptcl  12340  pcmpt  12341  pcmpt2  12342  pcprod  12344  fldivp1  12346  unct  12443  lgsneg  14428  lgsdilem  14431  lgsdir2  14437  lgsdir  14439  lgsdi  14441  lgsne0  14442
  Copyright terms: Public domain W3C validator