| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > iffalse | Unicode version | ||
| Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) | 
| Ref | Expression | 
|---|---|
| iffalse | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-if 3562 | 
. 2
 | |
| 2 | dedlemb 972 | 
. . 3
 | |
| 3 | 2 | abbi2dv 2315 | 
. 2
 | 
| 4 | 1, 3 | eqtr4id 2248 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 | 
| This theorem is referenced by: iffalsei 3570 iffalsed 3571 ifnefalse 3572 ifsbdc 3573 ifcldadc 3590 ifeq1dadc 3591 ifbothdadc 3593 ifbothdc 3594 ifiddc 3595 ifcldcd 3597 ifnotdc 3598 ifandc 3599 ifordc 3600 ifnetruedc 3602 pw2f1odclem 6895 fidifsnen 6931 nnnninf 7192 uzin 9634 modifeq2int 10478 seqf1oglem1 10611 seqf1oglem2 10612 bcval 10841 bcval3 10843 sumrbdclem 11542 fsum3cvg 11543 summodclem2a 11546 sumsplitdc 11597 prodrbdclem 11736 fproddccvg 11737 prodssdc 11754 flodddiv4 12101 gcdn0val 12128 dfgcd2 12181 lcmn0val 12234 pcgcd 12498 pcmptcl 12511 pcmpt 12512 pcmpt2 12513 pcprod 12515 fldivp1 12517 unct 12659 lgsneg 15265 lgsdilem 15268 lgsdir2 15274 lgsdir 15276 lgsdi 15278 lgsne0 15279 gausslemma2dlem1a 15299 2lgslem1c 15331 2lgs 15345 | 
| Copyright terms: Public domain | W3C validator |