ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iffalse Unicode version

Theorem iffalse 3587
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.)
Assertion
Ref Expression
iffalse  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )

Proof of Theorem iffalse
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-if 3580 . 2  |-  if (
ph ,  A ,  B )  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) }
2 dedlemb 973 . . 3  |-  ( -. 
ph  ->  ( x  e.  B  <->  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) ) )
32abbi2dv 2326 . 2  |-  ( -. 
ph  ->  B  =  {
x  |  ( ( x  e.  A  /\  ph )  \/  ( x  e.  B  /\  -.  ph ) ) } )
41, 3eqtr4id 2259 1  |-  ( -. 
ph  ->  if ( ph ,  A ,  B )  =  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373    e. wcel 2178   {cab 2193   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-if 3580
This theorem is referenced by:  iffalsei  3588  iffalsed  3589  ifnefalse  3590  ifsbdc  3592  ifcldadc  3609  ifeq1dadc  3610  ifeqdadc  3612  ifbothdadc  3613  ifbothdc  3614  ifiddc  3615  ifcldcd  3617  ifnotdc  3618  2if2dc  3619  ifandc  3620  ifordc  3621  ifnetruedc  3623  pw2f1odclem  6956  fidifsnen  6993  nnnninf  7254  uzin  9716  modifeq2int  10568  seqf1oglem1  10701  seqf1oglem2  10702  bcval  10931  bcval3  10933  swrdccat  11226  pfxccat3a  11229  swrdccat3b  11231  sumrbdclem  11803  fsum3cvg  11804  summodclem2a  11807  sumsplitdc  11858  prodrbdclem  11997  fproddccvg  11998  prodssdc  12015  flodddiv4  12362  gcdn0val  12397  dfgcd2  12450  lcmn0val  12503  pcgcd  12767  pcmptcl  12780  pcmpt  12781  pcmpt2  12782  pcprod  12784  fldivp1  12786  unct  12928  lgsneg  15616  lgsdilem  15619  lgsdir2  15625  lgsdir  15627  lgsdi  15629  lgsne0  15630  gausslemma2dlem1a  15650  2lgslem1c  15682  2lgs  15696
  Copyright terms: Public domain W3C validator