![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iffalse | Unicode version |
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
iffalse |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3558 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dedlemb 972 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | abbi2dv 2312 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtr4id 2245 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-if 3558 |
This theorem is referenced by: iffalsei 3566 iffalsed 3567 ifnefalse 3568 ifsbdc 3569 ifcldadc 3586 ifeq1dadc 3587 ifbothdadc 3589 ifbothdc 3590 ifiddc 3591 ifcldcd 3593 ifnotdc 3594 ifandc 3595 ifordc 3596 ifnetruedc 3598 pw2f1odclem 6890 fidifsnen 6926 nnnninf 7185 uzin 9625 modifeq2int 10457 seqf1oglem1 10590 seqf1oglem2 10591 bcval 10820 bcval3 10822 sumrbdclem 11520 fsum3cvg 11521 summodclem2a 11524 sumsplitdc 11575 prodrbdclem 11714 fproddccvg 11715 prodssdc 11732 flodddiv4 12075 gcdn0val 12098 dfgcd2 12151 lcmn0val 12204 pcgcd 12467 pcmptcl 12480 pcmpt 12481 pcmpt2 12482 pcprod 12484 fldivp1 12486 unct 12599 lgsneg 15140 lgsdilem 15143 lgsdir2 15149 lgsdir 15151 lgsdi 15153 lgsne0 15154 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |