![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iffalse | Unicode version |
Description: Value of the conditional operator when its first argument is false. (Contributed by NM, 14-Aug-1999.) |
Ref | Expression |
---|---|
iffalse |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-if 3537 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | dedlemb 970 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | abbi2dv 2296 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eqtr4id 2229 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-if 3537 |
This theorem is referenced by: iffalsei 3545 iffalsed 3546 ifnefalse 3547 ifsbdc 3548 ifcldadc 3565 ifeq1dadc 3566 ifbothdadc 3568 ifbothdc 3569 ifiddc 3570 ifcldcd 3572 ifnotdc 3573 ifandc 3574 ifordc 3575 fidifsnen 6873 nnnninf 7127 uzin 9563 modifeq2int 10389 bcval 10732 bcval3 10734 sumrbdclem 11388 fsum3cvg 11389 summodclem2a 11392 sumsplitdc 11443 prodrbdclem 11582 fproddccvg 11583 prodssdc 11600 flodddiv4 11942 gcdn0val 11965 dfgcd2 12018 lcmn0val 12069 pcgcd 12331 pcmptcl 12343 pcmpt 12344 pcmpt2 12345 pcprod 12347 fldivp1 12349 unct 12446 lgsneg 14586 lgsdilem 14589 lgsdir2 14595 lgsdir 14597 lgsdi 14599 lgsne0 14600 |
Copyright terms: Public domain | W3C validator |