ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imandc Unicode version

Theorem imandc 884
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176, with an added decidability condition. The forward direction, imanim 683, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 25-Apr-2018.)
Assertion
Ref Expression
imandc  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )

Proof of Theorem imandc
StepHypRef Expression
1 dcstab 839 . 2  |-  (DECID  ps  -> STAB  ps )
2 imanst 883 . 2  |-  (STAB  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )
31, 2syl 14 1  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104  STAB wstab 825  DECID wdc 829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-stab 826  df-dc 830
This theorem is referenced by:  annimdc  932  isprm3  12072
  Copyright terms: Public domain W3C validator