ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imandc Unicode version

Theorem imandc 894
Description: Express implication in terms of conjunction. Theorem 3.4(27) of [Stoll] p. 176, with an added decidability condition. The forward direction, imanim 692, holds for all propositions, not just decidable ones. (Contributed by Jim Kingdon, 25-Apr-2018.)
Assertion
Ref Expression
imandc  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )

Proof of Theorem imandc
StepHypRef Expression
1 dcstab 849 . 2  |-  (DECID  ps  -> STAB  ps )
2 imanst 893 . 2  |-  (STAB  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )
31, 2syl 14 1  |-  (DECID  ps  ->  ( ( ph  ->  ps ) 
<->  -.  ( ph  /\  -.  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105  STAB wstab 835  DECID wdc 839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840
This theorem is referenced by:  annimdc  943  isprm3  12640
  Copyright terms: Public domain W3C validator