![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imanim | Unicode version |
Description: Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 824. (Contributed by Jim Kingdon, 24-Dec-2017.) |
Ref | Expression |
---|---|
imanim |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annimim 820 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | con2i 592 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-in1 579 ax-in2 580 |
This theorem is referenced by: difdif 3125 ssdif0im 3347 inssdif0im 3350 nominpos 8651 |
Copyright terms: Public domain | W3C validator |