![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imanim | Unicode version |
Description: Express implication in terms of conjunction. The converse only holds given a decidability condition; see imandc 889. (Contributed by Jim Kingdon, 24-Dec-2017.) |
Ref | Expression |
---|---|
imanim |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | annimim 686 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | con2i 627 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-in1 614 ax-in2 615 |
This theorem is referenced by: difdif 3260 ssdif0im 3487 inssdif0im 3490 nominpos 9155 |
Copyright terms: Public domain | W3C validator |