Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > annimdc | Unicode version |
Description: Express conjunction in terms of implication. The forward direction, annimim 676, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.) |
Ref | Expression |
---|---|
annimdc | DECID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imandc 879 | . . . 4 DECID | |
2 | 1 | adantl 275 | . . 3 DECID DECID |
3 | dcim 831 | . . . . 5 DECID DECID DECID | |
4 | 3 | imp 123 | . . . 4 DECID DECID DECID |
5 | dcn 832 | . . . . . 6 DECID DECID | |
6 | dcan2 924 | . . . . . 6 DECID DECID DECID | |
7 | 5, 6 | syl5 32 | . . . . 5 DECID DECID DECID |
8 | 7 | imp 123 | . . . 4 DECID DECID DECID |
9 | con2bidc 865 | . . . 4 DECID DECID | |
10 | 4, 8, 9 | sylc 62 | . . 3 DECID DECID |
11 | 2, 10 | mpbid 146 | . 2 DECID DECID |
12 | 11 | ex 114 | 1 DECID DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 DECID wdc 824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 |
This theorem is referenced by: xordidc 1389 |
Copyright terms: Public domain | W3C validator |