| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > annimdc | Unicode version | ||
| Description: Express conjunction in terms of implication. The forward direction, annimim 687, is valid for all propositions, but as an equivalence, it requires a decidability condition. (Contributed by Jim Kingdon, 25-Apr-2018.) |
| Ref | Expression |
|---|---|
| annimdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imandc 890 |
. . . 4
| |
| 2 | 1 | adantl 277 |
. . 3
|
| 3 | dcim 842 |
. . . . 5
| |
| 4 | 3 | imp 124 |
. . . 4
|
| 5 | dcn 843 |
. . . . 5
| |
| 6 | dcan 935 |
. . . . 5
| |
| 7 | 5, 6 | sylan2 286 |
. . . 4
|
| 8 | con2bidc 876 |
. . . 4
| |
| 9 | 4, 7, 8 | sylc 62 |
. . 3
|
| 10 | 2, 9 | mpbid 147 |
. 2
|
| 11 | 10 | ex 115 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 |
| This theorem is referenced by: xordidc 1410 |
| Copyright terms: Public domain | W3C validator |