ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm3 Unicode version

Theorem isprm3 12132
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Distinct variable group:    z, P

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 12131 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2 dvdszrcl 11813 . . . . . . . . . . 11  |-  ( z 
||  P  ->  (
z  e.  ZZ  /\  P  e.  ZZ )
)
32simpld 112 . . . . . . . . . 10  |-  ( z 
||  P  ->  z  e.  ZZ )
4 1zzd 9294 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  1  e.  ZZ )
5 zdceq 9342 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  -> DECID  z  =  1 )
63, 4, 5syl2an2 594 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  z  =  1
)
72simprd 114 . . . . . . . . . . 11  |-  ( z 
||  P  ->  P  e.  ZZ )
87adantl 277 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  P  e.  ZZ )
9 zdceq 9342 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  -> DECID  z  =  P )
103, 8, 9syl2an2 594 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  z  =  P
)
11 dcor 936 . . . . . . . . 9  |-  (DECID  z  =  1  ->  (DECID  z  =  P  -> DECID 
( z  =  1  \/  z  =  P ) ) )
126, 10, 11sylc 62 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  ( z  =  1  \/  z  =  P ) )
13 imandc 890 . . . . . . . 8  |-  (DECID  ( z  =  1  \/  z  =  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  (
z  e.  NN  /\  -.  ( z  =  1  \/  z  =  P ) ) ) )
1412, 13syl 14 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  (
z  e.  NN  /\  -.  ( z  =  1  \/  z  =  P ) ) ) )
15 eluz2nn 9580 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
16 nnz 9286 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  z  e.  ZZ )
17 dvdsle 11864 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
1816, 17sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
19 nnge1 8956 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  1  <_  z )
2019adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  1  <_  z )
2118, 20jctild 316 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
2215, 21sylan2 286 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
23 nnz 9286 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  ZZ )
24 zre 9271 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ZZ  ->  z  e.  RR )
25 1re 7970 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  RR
26 leltap 8596 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  e.  RR  /\  z  e.  RR  /\  1  <_  z )  ->  (
1  <  z  <->  z #  1
) )
2725, 26mp3an1 1334 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  RR  /\  1  <_  z )  -> 
( 1  <  z  <->  z #  1 ) )
2824, 27sylan 283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( 1  <  z  <->  z #  1 ) )
29 1z 9293 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  ZZ
30 zapne 9341 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  ->  ( z #  1  <->  z  =/=  1 ) )
3129, 30mpan2 425 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ZZ  ->  (
z #  1  <->  z  =/=  1 ) )
3231adantr 276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( z #  1  <->  z  =/=  1 ) )
3328, 32bitrd 188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( 1  <  z  <->  z  =/=  1 ) )
34333adant2 1017 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  1  <_  z )  ->  (
1  <  z  <->  z  =/=  1 ) )
35343expia 1206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <_  z  ->  ( 1  <  z  <->  z  =/=  1 ) ) )
36 zre 9271 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  ZZ  ->  P  e.  RR )
37 leltap 8596 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  RR  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
3824, 37syl3an1 1281 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
3936, 38syl3an2 1282 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
40 zapne 9341 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  ZZ  /\  z  e.  ZZ )  ->  ( P #  z  <->  P  =/=  z ) )
4140ancoms 268 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( P #  z  <->  P  =/=  z ) )
42413adant3 1018 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  ( P #  z  <->  P  =/=  z
) )
4339, 42bitrd 188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  (
z  <  P  <->  P  =/=  z ) )
44433expia 1206 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <_  P  ->  ( z  <  P  <->  P  =/=  z ) ) )
4535, 44anim12d 335 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
4623, 45sylan2 286 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
47 pm4.38 605 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  ( z  =/=  1  /\  P  =/=  z ) ) )
48 df-ne 2358 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =/=  1  <->  -.  z  =  1 )
49 nesym 2402 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  =/=  z  <->  -.  z  =  P )
5048, 49anbi12i 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =/=  1  /\  P  =/=  z )  <-> 
( -.  z  =  1  /\  -.  z  =  P ) )
51 ioran 753 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( z  =  1  \/  z  =  P )  <->  ( -.  z  =  1  /\  -.  z  =  P )
)
5250, 51bitr4i 187 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =/=  1  /\  P  =/=  z )  <->  -.  ( z  =  1  \/  z  =  P ) )
5347, 52bitrdi 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) )
5446, 53syl6 33 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
5516, 15, 54syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
5622, 55syld 45 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) ) )
5756imp 124 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) )
58 eluzelz 9551 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
59 zltp1le 9321 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  ZZ  /\  z  e.  ZZ )  ->  ( 1  <  z  <->  ( 1  +  1 )  <_  z ) )
6029, 59mpan 424 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  ( 1  +  1 )  <_ 
z ) )
61 df-2 8992 . . . . . . . . . . . . . . . . . . . 20  |-  2  =  ( 1  +  1 )
6261breq1i 4022 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  <_  z  <->  ( 1  +  1 )  <_ 
z )
6360, 62bitr4di 198 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  2  <_  z ) )
6463adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <  z  <->  2  <_  z ) )
65 zltlem1 9324 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
6664, 65anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
67 peano2zm 9305 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
68 2z 9295 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
69 elfz 10028 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  2  e.  ZZ  /\  ( P  -  1 )  e.  ZZ )  -> 
( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
7068, 69mp3an2 1335 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  ( P  -  1
)  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
7167, 70sylan2 286 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
7266, 71bitr4d 191 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7316, 58, 72syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7473adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7557, 74bitr3d 190 . . . . . . . . . . . 12  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7675anasss 399 . . . . . . . . . . 11  |-  ( ( z  e.  NN  /\  ( P  e.  ( ZZ>=
`  2 )  /\  z  ||  P ) )  ->  ( -.  (
z  =  1  \/  z  =  P )  <-> 
z  e.  ( 2 ... ( P  - 
1 ) ) ) )
7776expcom 116 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
z  e.  NN  ->  ( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
7877pm5.32d 450 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
79 fzssuz 10079 . . . . . . . . . . . . 13  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  2 )
80 2eluzge1 9590 . . . . . . . . . . . . . 14  |-  2  e.  ( ZZ>= `  1 )
81 uzss 9562 . . . . . . . . . . . . . 14  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 ) )
8280, 81ax-mp 5 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 )
8379, 82sstri 3176 . . . . . . . . . . . 12  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  1 )
84 nnuz 9577 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
8583, 84sseqtrri 3202 . . . . . . . . . . 11  |-  ( 2 ... ( P  - 
1 ) )  C_  NN
8685sseli 3163 . . . . . . . . . 10  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  z  e.  NN )
8786pm4.71ri 392 . . . . . . . . 9  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8878, 87bitr4di 198 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8988notbid 668 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  ( -.  ( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
9014, 89bitrd 188 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
9190pm5.74da 443 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  ( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  ||  P  ->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
92 bi2.04 248 . . . . 5  |-  ( ( z  ||  P  -> 
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
93 con2b 670 . . . . 5  |-  ( ( z  ||  P  ->  -.  z  e.  (
2 ... ( P  - 
1 ) ) )  <-> 
( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) )
9491, 92, 933bitr3g 222 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  NN  ->  ( z  ||  P  -> 
( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) ) )
9594ralbidv2 2489 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
9695pm5.32i 454 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
971, 96bitri 184 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 979    = wceq 1363    e. wcel 2158    =/= wne 2357   A.wral 2465    C_ wss 3141   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   RRcr 7824   1c1 7826    + caddc 7828    < clt 8006    <_ cle 8007    - cmin 8142   # cap 8552   NNcn 8933   2c2 8984   ZZcz 9267   ZZ>=cuz 9542   ...cfz 10022    || cdvds 11808   Primecprime 12121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-1o 6431  df-2o 6432  df-er 6549  df-en 6755  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-q 9634  df-rp 9668  df-fz 10023  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-dvds 11809  df-prm 12122
This theorem is referenced by:  prmind2  12134  2prm  12141  3prm  12142  prmdc  12144  isprm5  12156
  Copyright terms: Public domain W3C validator