ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isprm3 Unicode version

Theorem isprm3 12311
Description: The predicate "is a prime number". A prime number is an integer greater than or equal to 2 with no divisors strictly between 1 and itself. (Contributed by Paul Chapman, 26-Oct-2012.)
Assertion
Ref Expression
isprm3  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Distinct variable group:    z, P

Proof of Theorem isprm3
StepHypRef Expression
1 isprm2 12310 . 2  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  NN  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
2 dvdszrcl 11974 . . . . . . . . . . 11  |-  ( z 
||  P  ->  (
z  e.  ZZ  /\  P  e.  ZZ )
)
32simpld 112 . . . . . . . . . 10  |-  ( z 
||  P  ->  z  e.  ZZ )
4 1zzd 9370 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  1  e.  ZZ )
5 zdceq 9418 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  -> DECID  z  =  1 )
63, 4, 5syl2an2 594 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  z  =  1
)
72simprd 114 . . . . . . . . . . 11  |-  ( z 
||  P  ->  P  e.  ZZ )
87adantl 277 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  P  e.  ZZ )
9 zdceq 9418 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  -> DECID  z  =  P )
103, 8, 9syl2an2 594 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  z  =  P
)
11 dcor 937 . . . . . . . . 9  |-  (DECID  z  =  1  ->  (DECID  z  =  P  -> DECID 
( z  =  1  \/  z  =  P ) ) )
126, 10, 11sylc 62 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  -> DECID  ( z  =  1  \/  z  =  P ) )
13 imandc 890 . . . . . . . 8  |-  (DECID  ( z  =  1  \/  z  =  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  (
z  e.  NN  /\  -.  ( z  =  1  \/  z  =  P ) ) ) )
1412, 13syl 14 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  (
z  e.  NN  /\  -.  ( z  =  1  \/  z  =  P ) ) ) )
15 eluz2nn 9657 . . . . . . . . . . . . . . . 16  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  NN )
16 nnz 9362 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  z  e.  ZZ )
17 dvdsle 12026 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
1816, 17sylan 283 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  z  <_  P )
)
19 nnge1 9030 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  NN  ->  1  <_  z )
2019adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  1  <_  z )
2118, 20jctild 316 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  NN  /\  P  e.  NN )  ->  ( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
2215, 21sylan2 286 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( 1  <_  z  /\  z  <_  P ) ) )
23 nnz 9362 . . . . . . . . . . . . . . . . . 18  |-  ( P  e.  NN  ->  P  e.  ZZ )
24 zre 9347 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ZZ  ->  z  e.  RR )
25 1re 8042 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  RR
26 leltap 8669 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 1  e.  RR  /\  z  e.  RR  /\  1  <_  z )  ->  (
1  <  z  <->  z #  1
) )
2725, 26mp3an1 1335 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  RR  /\  1  <_  z )  -> 
( 1  <  z  <->  z #  1 ) )
2824, 27sylan 283 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( 1  <  z  <->  z #  1 ) )
29 1z 9369 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  1  e.  ZZ
30 zapne 9417 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( z  e.  ZZ  /\  1  e.  ZZ )  ->  ( z #  1  <->  z  =/=  1 ) )
3129, 30mpan2 425 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( z  e.  ZZ  ->  (
z #  1  <->  z  =/=  1 ) )
3231adantr 276 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( z #  1  <->  z  =/=  1 ) )
3328, 32bitrd 188 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  1  <_  z )  -> 
( 1  <  z  <->  z  =/=  1 ) )
34333adant2 1018 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  1  <_  z )  ->  (
1  <  z  <->  z  =/=  1 ) )
35343expia 1207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <_  z  ->  ( 1  <  z  <->  z  =/=  1 ) ) )
36 zre 9347 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  ZZ  ->  P  e.  RR )
37 leltap 8669 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( z  e.  RR  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
3824, 37syl3an1 1282 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  P  e.  RR  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
3936, 38syl3an2 1283 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  (
z  <  P  <->  P #  z
) )
40 zapne 9417 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  ZZ  /\  z  e.  ZZ )  ->  ( P #  z  <->  P  =/=  z ) )
4140ancoms 268 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( P #  z  <->  P  =/=  z ) )
42413adant3 1019 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  ( P #  z  <->  P  =/=  z
) )
4339, 42bitrd 188 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ  /\  z  <_  P )  ->  (
z  <  P  <->  P  =/=  z ) )
44433expia 1207 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <_  P  ->  ( z  <  P  <->  P  =/=  z ) ) )
4535, 44anim12d 335 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
4623, 45sylan2 286 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  <->  z  =/=  1 )  /\  (
z  <  P  <->  P  =/=  z ) ) ) )
47 pm4.38 605 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  ( z  =/=  1  /\  P  =/=  z ) ) )
48 df-ne 2368 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =/=  1  <->  -.  z  =  1 )
49 nesym 2412 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  =/=  z  <->  -.  z  =  P )
5048, 49anbi12i 460 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =/=  1  /\  P  =/=  z )  <-> 
( -.  z  =  1  /\  -.  z  =  P ) )
51 ioran 753 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  ( z  =  1  \/  z  =  P )  <->  ( -.  z  =  1  /\  -.  z  =  P )
)
5250, 51bitr4i 187 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  =/=  1  /\  P  =/=  z )  <->  -.  ( z  =  1  \/  z  =  P ) )
5347, 52bitrdi 196 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 1  <  z  <->  z  =/=  1 )  /\  ( z  <  P  <->  P  =/=  z ) )  ->  ( ( 1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) )
5446, 53syl6 33 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  NN )  ->  ( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
5516, 15, 54syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  <_ 
z  /\  z  <_  P )  ->  ( (
1  <  z  /\  z  <  P )  <->  -.  (
z  =  1  \/  z  =  P ) ) ) )
5622, 55syld 45 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( z  ||  P  ->  ( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) ) )
5756imp 124 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  -.  ( z  =  1  \/  z  =  P ) ) )
58 eluzelz 9627 . . . . . . . . . . . . . . 15  |-  ( P  e.  ( ZZ>= `  2
)  ->  P  e.  ZZ )
59 zltp1le 9397 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  ZZ  /\  z  e.  ZZ )  ->  ( 1  <  z  <->  ( 1  +  1 )  <_  z ) )
6029, 59mpan 424 . . . . . . . . . . . . . . . . . . 19  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  ( 1  +  1 )  <_ 
z ) )
61 df-2 9066 . . . . . . . . . . . . . . . . . . . 20  |-  2  =  ( 1  +  1 )
6261breq1i 4041 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  <_  z  <->  ( 1  +  1 )  <_ 
z )
6360, 62bitr4di 198 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  ZZ  ->  (
1  <  z  <->  2  <_  z ) )
6463adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( 1  <  z  <->  2  <_  z ) )
65 zltlem1 9400 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  <  P  <->  z  <_  ( P  - 
1 ) ) )
6664, 65anbi12d 473 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
67 peano2zm 9381 . . . . . . . . . . . . . . . . 17  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
68 2z 9371 . . . . . . . . . . . . . . . . . 18  |-  2  e.  ZZ
69 elfz 10106 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  e.  ZZ  /\  2  e.  ZZ  /\  ( P  -  1 )  e.  ZZ )  -> 
( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
7068, 69mp3an2 1336 . . . . . . . . . . . . . . . . 17  |-  ( ( z  e.  ZZ  /\  ( P  -  1
)  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( 2  <_ 
z  /\  z  <_  ( P  -  1 ) ) ) )
7167, 70sylan2 286 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( z  e.  ( 2 ... ( P  -  1 ) )  <-> 
( 2  <_  z  /\  z  <_  ( P  -  1 ) ) ) )
7266, 71bitr4d 191 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7316, 58, 72syl2an 289 . . . . . . . . . . . . . 14  |-  ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7473adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( ( 1  < 
z  /\  z  <  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7557, 74bitr3d 190 . . . . . . . . . . . 12  |-  ( ( ( z  e.  NN  /\  P  e.  ( ZZ>= ` 
2 ) )  /\  z  ||  P )  -> 
( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
7675anasss 399 . . . . . . . . . . 11  |-  ( ( z  e.  NN  /\  ( P  e.  ( ZZ>=
`  2 )  /\  z  ||  P ) )  ->  ( -.  (
z  =  1  \/  z  =  P )  <-> 
z  e.  ( 2 ... ( P  - 
1 ) ) ) )
7776expcom 116 . . . . . . . . . 10  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
z  e.  NN  ->  ( -.  ( z  =  1  \/  z  =  P )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
7877pm5.32d 450 . . . . . . . . 9  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
79 fzssuz 10157 . . . . . . . . . . . . 13  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  2 )
80 2eluzge1 9667 . . . . . . . . . . . . . 14  |-  2  e.  ( ZZ>= `  1 )
81 uzss 9639 . . . . . . . . . . . . . 14  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 ) )
8280, 81ax-mp 5 . . . . . . . . . . . . 13  |-  ( ZZ>= ` 
2 )  C_  ( ZZ>=
`  1 )
8379, 82sstri 3193 . . . . . . . . . . . 12  |-  ( 2 ... ( P  - 
1 ) )  C_  ( ZZ>= `  1 )
84 nnuz 9654 . . . . . . . . . . . 12  |-  NN  =  ( ZZ>= `  1 )
8583, 84sseqtrri 3219 . . . . . . . . . . 11  |-  ( 2 ... ( P  - 
1 ) )  C_  NN
8685sseli 3180 . . . . . . . . . 10  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  z  e.  NN )
8786pm4.71ri 392 . . . . . . . . 9  |-  ( z  e.  ( 2 ... ( P  -  1 ) )  <->  ( z  e.  NN  /\  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8878, 87bitr4di 198 . . . . . . . 8  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  z  e.  ( 2 ... ( P  -  1 ) ) ) )
8988notbid 668 . . . . . . 7  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  ( -.  ( z  e.  NN  /\ 
-.  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
9014, 89bitrd 188 . . . . . 6  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  z  ||  P )  ->  (
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) )  <->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) )
9190pm5.74da 443 . . . . 5  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  ||  P  ->  ( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  ||  P  ->  -.  z  e.  ( 2 ... ( P  -  1 ) ) ) ) )
92 bi2.04 248 . . . . 5  |-  ( ( z  ||  P  -> 
( z  e.  NN  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  NN  ->  ( z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) ) )
93 con2b 670 . . . . 5  |-  ( ( z  ||  P  ->  -.  z  e.  (
2 ... ( P  - 
1 ) ) )  <-> 
( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) )
9491, 92, 933bitr3g 222 . . . 4  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( (
z  e.  NN  ->  ( z  ||  P  -> 
( z  =  1  \/  z  =  P ) ) )  <->  ( z  e.  ( 2 ... ( P  -  1 ) )  ->  -.  z  ||  P ) ) )
9594ralbidv2 2499 . . 3  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) )  <->  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
9695pm5.32i 454 . 2  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  A. z  e.  NN  (
z  ||  P  ->  ( z  =  1  \/  z  =  P ) ) )  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
971, 96bitri 184 1  |-  ( P  e.  Prime  <->  ( P  e.  ( ZZ>= `  2 )  /\  A. z  e.  ( 2 ... ( P  -  1 ) )  -.  z  ||  P
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 980    = wceq 1364    e. wcel 2167    =/= wne 2367   A.wral 2475    C_ wss 3157   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   RRcr 7895   1c1 7897    + caddc 7899    < clt 8078    <_ cle 8079    - cmin 8214   # cap 8625   NNcn 9007   2c2 9058   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    || cdvds 11969   Primecprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-prm 12301
This theorem is referenced by:  prmind2  12313  2prm  12320  3prm  12321  prmdc  12323  isprm5  12335  mersenne  15317
  Copyright terms: Public domain W3C validator