ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imordc Unicode version

Theorem imordc 899
Description: Implication in terms of disjunction for a decidable proposition. Based on theorem *4.6 of [WhiteheadRussell] p. 120. The reverse direction, imorr 723, holds for all propositions. (Contributed by Jim Kingdon, 20-Apr-2018.)
Assertion
Ref Expression
imordc  |-  (DECID  ph  ->  ( ( ph  ->  ps ) 
<->  ( -.  ph  \/  ps ) ) )

Proof of Theorem imordc
StepHypRef Expression
1 notnotbdc 874 . . 3  |-  (DECID  ph  ->  (
ph 
<->  -.  -.  ph )
)
21imbi1d 231 . 2  |-  (DECID  ph  ->  ( ( ph  ->  ps ) 
<->  ( -.  -.  ph  ->  ps ) ) )
3 dcn 844 . . 3  |-  (DECID  ph  -> DECID  -.  ph )
4 dfordc 894 . . 3  |-  (DECID  -.  ph  ->  ( ( -.  ph  \/  ps )  <->  ( -.  -.  ph  ->  ps )
) )
53, 4syl 14 . 2  |-  (DECID  ph  ->  ( ( -.  ph  \/  ps )  <->  ( -.  -.  ph 
->  ps ) ) )
62, 5bitr4d 191 1  |-  (DECID  ph  ->  ( ( ph  ->  ps ) 
<->  ( -.  ph  \/  ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 710  DECID wdc 836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837
This theorem is referenced by:  pm4.62dc  900  pm2.26dc  909  nf4dc  1693  algcvgblem  12371  divgcdodd  12465
  Copyright terms: Public domain W3C validator