ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2.04 Unicode version

Theorem bi2.04 248
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
bi2.04  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ps  ->  ( ph  ->  ch ) ) )

Proof of Theorem bi2.04
StepHypRef Expression
1 pm2.04 82 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ps  ->  ( ph  ->  ch ) ) )
2 pm2.04 82 . 2  |-  ( ( ps  ->  ( ph  ->  ch ) )  -> 
( ph  ->  ( ps 
->  ch ) ) )
31, 2impbii 126 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ps  ->  ( ph  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imim21b  253  pm4.87  557  imimorbdc  898  sbcom2v  2013  mor  2096  r19.21t  2581  reu8  2969  ra5  3087  unissb  3880  reusv3  4508  zfregfr  4623  tfi  4631  fun11  5342  prime  9474  raluz2  9702  isprm3  12473  isprm4  12474  bj-inf2vnlem2  15944
  Copyright terms: Public domain W3C validator