ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2.04 Unicode version

Theorem bi2.04 248
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
bi2.04  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ps  ->  ( ph  ->  ch ) ) )

Proof of Theorem bi2.04
StepHypRef Expression
1 pm2.04 82 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ps  ->  ( ph  ->  ch ) ) )
2 pm2.04 82 . 2  |-  ( ( ps  ->  ( ph  ->  ch ) )  -> 
( ph  ->  ( ps 
->  ch ) ) )
31, 2impbii 126 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ps  ->  ( ph  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imim21b  253  pm4.87  557  imimorbdc  898  sbcom2v  2014  mor  2098  r19.21t  2583  reu8  2976  ra5  3095  unissb  3894  reusv3  4525  zfregfr  4640  tfi  4648  fun11  5360  prime  9507  raluz2  9735  isprm3  12555  isprm4  12556  bj-inf2vnlem2  16106
  Copyright terms: Public domain W3C validator