ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bi2.04 Unicode version

Theorem bi2.04 248
Description: Logical equivalence of commuted antecedents. Part of Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
bi2.04  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ps  ->  ( ph  ->  ch ) ) )

Proof of Theorem bi2.04
StepHypRef Expression
1 pm2.04 82 . 2  |-  ( (
ph  ->  ( ps  ->  ch ) )  ->  ( ps  ->  ( ph  ->  ch ) ) )
2 pm2.04 82 . 2  |-  ( ( ps  ->  ( ph  ->  ch ) )  -> 
( ph  ->  ( ps 
->  ch ) ) )
31, 2impbii 126 1  |-  ( (
ph  ->  ( ps  ->  ch ) )  <->  ( ps  ->  ( ph  ->  ch ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  imim21b  253  pm4.87  557  imimorbdc  897  sbcom2v  1995  mor  2078  r19.21t  2562  reu8  2945  ra5  3063  unissb  3851  reusv3  4472  zfregfr  4585  tfi  4593  fun11  5295  prime  9366  raluz2  9593  isprm3  12132  isprm4  12133  bj-inf2vnlem2  15019
  Copyright terms: Public domain W3C validator