ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  jao1i Unicode version

Theorem jao1i 786
Description: Add a disjunct in the antecedent of an implication. (Contributed by Rodolfo Medina, 24-Sep-2010.)
Hypothesis
Ref Expression
jao1i.1  |-  ( ps 
->  ( ch  ->  ph )
)
Assertion
Ref Expression
jao1i  |-  ( (
ph  \/  ps )  ->  ( ch  ->  ph )
)

Proof of Theorem jao1i
StepHypRef Expression
1 ax-1 6 . 2  |-  ( ph  ->  ( ch  ->  ph )
)
2 jao1i.1 . 2  |-  ( ps 
->  ( ch  ->  ph )
)
31, 2jaoi 706 1  |-  ( (
ph  \/  ps )  ->  ( ch  ->  ph )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 698
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699
This theorem depends on definitions:  df-bi 116
This theorem is referenced by:  nn0enne  11839  dvdsprmpweqnn  12267  dvdsprmpweqle  12268
  Copyright terms: Public domain W3C validator